Uhhy commited on
Commit
2164e21
1 Parent(s): b24b2f1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -49,7 +49,7 @@ def normalize_input(input_text):
49
  return input_text.strip()
50
 
51
  def select_best_response(responses, request):
52
- coherent_responses = filter_by_coherence([resp['response'] for resp in responses], request)
53
  best_response = filter_by_similarity(coherent_responses)
54
  return best_response
55
 
@@ -75,19 +75,20 @@ async def generate_chat(request: ChatRequest):
75
  print(f"Procesando solicitud: {request.message}")
76
 
77
  # Crear un ThreadPoolExecutor para ejecutar las tareas en paralelo
78
- with ThreadPoolExecutor(max_workers=None) as executor:
79
  # Usar tqdm para mostrar la barra de progreso
80
  futures = [executor.submit(generate_chat_response, request, llm) for llm in llms]
81
  responses = []
82
-
83
  for future in tqdm(as_completed(futures), total=len(futures), desc="Generando respuestas"):
84
  response = future.result()
85
  responses.append(response)
86
  print(f"Modelo procesado: {response['literal'][:30]}...") # Muestra los primeros 30 caracteres de la respuesta
87
 
88
  # Verificar si hay errores en las respuestas
89
- if any("Error" in response['response'] for response in responses):
90
- error_response = next(response for response in responses if "Error" in response['response'])
 
91
  raise HTTPException(status_code=500, detail=error_response['response'])
92
 
93
  best_response = select_best_response([resp['response'] for resp in responses], request)
 
49
  return input_text.strip()
50
 
51
  def select_best_response(responses, request):
52
+ coherent_responses = filter_by_coherence(responses, request)
53
  best_response = filter_by_similarity(coherent_responses)
54
  return best_response
55
 
 
75
  print(f"Procesando solicitud: {request.message}")
76
 
77
  # Crear un ThreadPoolExecutor para ejecutar las tareas en paralelo
78
+ with ThreadPoolExecutor() as executor:
79
  # Usar tqdm para mostrar la barra de progreso
80
  futures = [executor.submit(generate_chat_response, request, llm) for llm in llms]
81
  responses = []
82
+
83
  for future in tqdm(as_completed(futures), total=len(futures), desc="Generando respuestas"):
84
  response = future.result()
85
  responses.append(response)
86
  print(f"Modelo procesado: {response['literal'][:30]}...") # Muestra los primeros 30 caracteres de la respuesta
87
 
88
  # Verificar si hay errores en las respuestas
89
+ error_responses = [resp for resp in responses if "Error" in resp['response']]
90
+ if error_responses:
91
+ error_response = error_responses[0]
92
  raise HTTPException(status_code=500, detail=error_response['response'])
93
 
94
  best_response = select_best_response([resp['response'] for resp in responses], request)