File size: 6,263 Bytes
a4da55f
7fa4c88
 
 
 
 
4f21ff8
7fa4c88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f21ff8
7fa4c88
 
4f21ff8
 
 
 
 
7fa4c88
 
98b623b
 
 
4f21ff8
7fa4c88
 
4f21ff8
7fa4c88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f21ff8
7fa4c88
 
4f21ff8
 
7fa4c88
4f21ff8
 
 
 
 
7fa4c88
84e0fec
7fa4c88
 
4f21ff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa4c88
4f21ff8
 
 
 
 
 
 
 
 
 
 
 
7fa4c88
 
4f21ff8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
import uvicorn
import re
from spaces import GPU

app = FastAPI()

global_data = {
    'models': {},
    'tokens': {
        'eos': 'eos_token',
        'pad': 'pad_token',
        'padding': 'padding_token',
        'unk': 'unk_token',
        'bos': 'bos_token',
        'sep': 'sep_token',
        'cls': 'cls_token',
        'mask': 'mask_token'
    }
}

model_configs = [
    {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
    {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
    {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
    {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
    {"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
    {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
    {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"},
    {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
    {"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"},
    {"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"},
    {"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
    {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
    {"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
    {"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"},
    {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}
]

class ModelManager:
    def __init__(self):
        self.models = {}

    def load_model(self, model_config):
        if model_config['name'] not in self.models:
            try:
                self.models[model_config['name']] = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'])
            except Exception as e:
                print(f"Error loading model {model_config['name']}: {e}")

    def load_all_models(self):
        with ThreadPoolExecutor() as executor:
            for config in model_configs:
                executor.submit(self.load_model, config)
        return self.models

model_manager = ModelManager()
global_data['models'] = model_manager.load_all_models()

class ChatRequest(BaseModel):
    message: str

def normalize_input(input_text):
    return input_text.strip()

def remove_duplicates(text):
    text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
    text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
    text = text.replace('[/INST]', '')
    lines = text.split('\n')
    unique_lines = []
    seen_lines = set()
    for line in lines:
        if line not in seen_lines:
            unique_lines.append(line)
            seen_lines.add(line)
    return '\n'.join(unique_lines)

@GPU(duration=0)
def generate_model_response(model, inputs):
    try:
        response = model(inputs)
        return remove_duplicates(response['choices'][0]['text'])
    except Exception as e:
        print(f"Error generating model response: {e}")
        return ""

@app.post("/generate")
async def generate(request: ChatRequest):
    try:
        inputs = normalize_input(request.message)
        with ThreadPoolExecutor() as executor:
            futures = [
                executor.submit(generate_model_response, model, inputs)
                for model in global_data['models'].values()
            ]
            responses = [{'model': model_name, 'response': future.result()} for model_name, future in zip(global_data['models'].keys(), as_completed(futures))]
        unique_responses = remove_repetitive_responses(responses)
        return unique_responses
    except Exception as e:
        print(f"Error generating responses: {e}")
        raise HTTPException(status_code=500, detail="Error generating responses")

@app.middleware("http")
async def process_request(request: Request, call_next):
    try:
        response = await call_next(request)
        return response
    except Exception as e:
        print(f"Request error: {e}")
        raise HTTPException(status_code=500, detail="Internal Server Error")

def remove_repetitive_responses(responses):
    unique_responses = {}
    for response in responses:
        if response['model'] not in unique_responses:
            unique_responses[response['model']] = response['response']
    return unique_responses

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)