File size: 5,323 Bytes
d4bad2d
 
 
 
 
 
 
 
 
 
98fb2de
fcd12ff
98fb2de
720fec8
fcd12ff
720fec8
 
d4bad2d
720fec8
 
fcd12ff
720fec8
 
fcd12ff
d4bad2d
29309b0
 
d4bad2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0646fa
d4bad2d
 
 
1deba83
 
 
 
 
b4d4d63
fcd12ff
d4bad2d
 
fcd12ff
d4bad2d
 
 
 
 
 
a0646fa
d4bad2d
ea0ca2f
d4bad2d
 
 
 
 
 
7188e05
85a5642
29309b0
d4bad2d
 
d3642ad
d4bad2d
29309b0
a0646fa
d4bad2d
 
29309b0
720fec8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from queue import Queue
from threading import Thread
from typing import Optional

import numpy as np
import torch

from transformers import MusicgenForConditionalGeneration, MusicgenProcessor, set_seed
from transformers.generation.streamers import BaseStreamer

import gradio as gr
import io

model_bytes = io.BytesIO()
processor_bytes = io.BytesIO()

model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
processor = MusicgenProcessor.from_pretrained("facebook/musicgen-small")

model.save_pretrained(model_bytes)
processor.save_pretrained(processor_bytes)

model = MusicgenForConditionalGeneration.from_pretrained(model_bytes)
processor = MusicgenProcessor.from_pretrained(processor_bytes)

title = "MusicGen Streaming"

class MusicgenStreamer(BaseStreamer):
    def __init__(
        self,
        model: MusicgenForConditionalGeneration,
        play_steps: Optional[int] = 10,
        stride: Optional[int] = None,
        timeout: Optional[float] = None,
    ):
        self.decoder = model.decoder
        self.audio_encoder = model.audio_encoder
        self.generation_config = model.generation_config

        self.play_steps = play_steps
        if stride is not None:
            self.stride = stride
        else:
            hop_length = np.prod(self.audio_encoder.config.upsampling_ratios)
            self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
        self.token_cache = None
        self.to_yield = 0

        self.audio_queue = Queue()
        self.stop_signal = None
        self.timeout = timeout

    def apply_delay_pattern_mask(self, input_ids):
        _, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
            input_ids[:, :1],
            pad_token_id=self.generation_config.decoder_start_token_id,
            max_length=input_ids.shape[-1],
        )
        input_ids = self.decoder.apply_delay_pattern_mask(input_ids, decoder_delay_pattern_mask)

        input_ids = input_ids[input_ids != self.generation_config.pad_token_id].reshape(
            1, self.decoder.num_codebooks, -1
        )

        input_ids = input_ids[None, ...]

        input_ids = input_ids.to(self.audio_encoder.device)

        output_values = self.audio_encoder.decode(
            input_ids,
            audio_scales=[None],
        )
        audio_values = output_values.audio_values[0, 0]
        return audio_values.cpu().float().numpy()

    def put(self, value):
        batch_size = value.shape[0] // self.decoder.num_codebooks
        if batch_size > 1:
            raise ValueError("MusicgenStreamer only supports batch size 1")

        if self.token_cache is None:
            self.token_cache = value
        else:
            self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)

        if self.token_cache.shape[-1] % self.play_steps == 0:
            audio_values = self.apply_delay_pattern_mask(self.token_cache)
            self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
            self.to_yield += len(audio_values) - self.to_yield - self.stride

    def end(self):
        if self.token_cache is not None:
            audio_values = self.apply_delay_pattern_mask(self.token_cache)
        else:
            audio_values = np.zeros(self.to_yield)

        self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)

    def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
        self.audio_queue.put(audio, timeout=self.timeout)
        if stream_end:
            self.audio_queue.put(self.stop_signal, timeout=self.timeout)

    def __iter__(self):
        return self

    def __next__(self):
        value = self.audio_queue.get(timeout=self.timeout)
        if not isinstance(value, np.ndarray) and value == self.stop_signal:
            raise StopIteration()
        else:
            return value


sampling_rate = model.audio_encoder.config.sampling_rate
frame_rate = model.audio_encoder.config.frame_rate


def generate_audio(text_prompt, audio_length_in_s=10.0, play_steps_in_s=2.0, seed=0):
    max_new_tokens = int(frame_rate * audio_length_in_s)
    play_steps = int(frame_rate * play_steps_in_s)

    inputs = processor(
        text=text_prompt,
        padding=True,
        return_tensors="pt",
    )

    streamer = MusicgenStreamer(model, play_steps=play_steps)

    generation_kwargs = dict(
        **inputs,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
    )
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    set_seed(seed)
    for new_audio in streamer:
        yield sampling_rate, new_audio


demo = gr.Interface(
    fn=generate_audio,
    inputs=[
        gr.Text(label="Prompt", value="80s pop track with synth and instrumentals"),
        gr.Slider(10, 600, value=15, step=5, label="Audio length in seconds"),
        gr.Slider(0.5, 2.5, value=1.5, step=0.5, label="Streaming interval in seconds", info="Lower = shorter chunks, lower latency, more codec steps"),
        gr.Slider(0, 10, value=5, step=1, label="Seed for random generations"),
    ],
    outputs=[
        gr.Audio(label="Generated Music", streaming=True, autoplay=True)
    ],
    title=title,
    cache_examples=False,
)


demo.queue(concurrency_count=5).launch()