File size: 7,059 Bytes
88ae463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f61f49b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm
import uvicorn
from dotenv import load_dotenv
from difflib import SequenceMatcher
import re
import logging
import os
import numpy as np
from functools import lru_cache
from cachetools import TTLCache
from multiprocessing import cpu_count
import queue

logging.basicConfig(level=logging.ERROR)

load_dotenv()

app = FastAPI()

cache_size = 2000
cache_ttl = 7200
cache = TTLCache(maxsize=cache_size, ttl=cache_ttl)

global_data = {
    'models': {}
}

model_configs = [
    {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
    {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
    {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
    {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
    {"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
    {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
    {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"}
]

class ModelManager:
    def __init__(self):
        self.models = {}
    
    def load_model(self, model_config):
        try:
            model = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'])
            self.models[model_config['name']] = model
            return model
        except Exception as e:
            logging.error(f"Error al cargar el modelo {model_config['name']}: {e}")
            return None
    
    def load_all_models(self):
        with ThreadPoolExecutor(max_workers=min(len(model_configs), cpu_count())) as executor:
            futures = [executor.submit(self.load_model, config) for config in model_configs]
            for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
                future.result()
        return self.models

model_manager = ModelManager()
model_manager.load_all_models()
global_data['models'] = model_manager.models

class ChatRequest(BaseModel):
    message: str
    top_k: int = 50
    top_p: float = 0.95
    temperature: float = 0.7

@lru_cache(maxsize=20000)
def generate_chat_response(request: ChatRequest, model_name: str):
    cache_key = f"{request.message}_{model_name}"
    
    if cache_key in cache:
        return cache[cache_key]
    
    model = global_data['models'].get(model_name)
    if not model:
        return {"response": "Error: Modelo no encontrado.", "literal": request.message, "model_name": model_name}
    
    try:
        user_input = normalize_input(request.message)
        response = model.create_chat_completion(
            messages=[{"role": "user", "content": user_input}],
            top_k=request.top_k,
            top_p=request.top_p,
            temperature=request.temperature
        )
        reply = response['choices'][0]['message']['content']
        
        cache[cache_key] = {"response": reply, "literal": user_input, "model_name": model_name}
        
        return cache[cache_key]
    except Exception as e:
        logging.error(f"Error en la generación de respuesta con el modelo {model_name}: {e}")
        return {"response": f"Error: {str(e)}", "literal": user_input, "model_name": model_name}

def normalize_input(input_text):
    return input_text.strip().lower()

def remove_duplicates(text):
    text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
    text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
    text = text.replace('[/INST]', '')
    lines = text.split('\n')
    unique_lines = list(dict.fromkeys(lines))
    return '\n'.join(unique_lines).strip()

def remove_repetitive_responses(responses):
    seen = set()
    unique_responses = []
    for response in responses:
        normalized_response = remove_duplicates(response['response'])
        if normalized_response not in seen:
            seen.add(normalized_response)
            unique_responses.append(response)
    return unique_responses

def select_best_response(responses):
    responses = remove_repetitive_responses(responses)
    responses = [remove_duplicates(response['response']) for response in responses]
    unique_responses = list(set(responses))
    coherent_responses = filter_by_coherence(unique_responses)
    best_response = filter_by_similarity(coherent_responses)
    return best_response

def filter_by_coherence(responses):
    responses.sort(key=len, reverse=True)
    return responses

def filter_by_similarity(responses):
    best_response = responses[0]
    for i in range(1, len(responses)):
        ratio = SequenceMatcher(None, best_response, responses[i]).ratio()
        if ratio < 0.9:
            best_response = responses[i]
            break
    return best_response

def worker_function(model_name, request, response_queue):
    try:
        response = generate_chat_response(request, model_name)
        response_queue.put((model_name, response))
    except Exception as e:
        logging.error(f"Error en la generación de respuesta con el modelo {model_name}: {e}")
        response_queue.put((model_name, {"response": f"Error: {str(e)}", "literal": request.message, "model_name": model_name}))

@app.post("/generate_chat")
async def generate_chat(request: ChatRequest):
    if not request.message.strip():
        raise HTTPException(status_code=400, detail="The message cannot be empty.")
    
    responses = []
    num_models = len(global_data['models'])
    response_queue = queue.Queue()

    with ThreadPoolExecutor(max_workers=min(num_models, cpu_count())) as executor:
        futures = [executor.submit(worker_function, model_name, request, response_queue) for model_name in global_data['models']]
        for future in tqdm(as_completed(futures), total=num_models, desc="Generando respuestas", unit="modelo"):
            future.result()
    
    while not response_queue.empty():
        model_name, response = response_queue.get()
        responses.append(response)
    
    best_response = select_best_response(responses)
    
    return {
        "best_response": best_response,
        "all_responses": responses
    }

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)