|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from llama_cpp import Llama |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
from tqdm import tqdm |
|
import uvicorn |
|
from dotenv import load_dotenv |
|
from difflib import SequenceMatcher |
|
import re |
|
import logging |
|
import os |
|
import numpy as np |
|
from functools import lru_cache |
|
from cachetools import TTLCache |
|
from multiprocessing import cpu_count |
|
import threading |
|
import queue |
|
|
|
|
|
logging.basicConfig(level=logging.ERROR) |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
cache_size = 2000 |
|
cache_ttl = 7200 |
|
cache = TTLCache(maxsize=cache_size, ttl=cache_ttl) |
|
|
|
|
|
global_data = { |
|
'models': {} |
|
} |
|
|
|
|
|
model_configs = [ |
|
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"}, |
|
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"}, |
|
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"} |
|
] |
|
|
|
|
|
class ModelManager: |
|
def __init__(self): |
|
self.models = {} |
|
|
|
def load_model(self, model_config): |
|
try: |
|
model = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']) |
|
self.models[model_config['name']] = model |
|
return model |
|
except Exception as e: |
|
logging.error(f"Error al cargar el modelo {model_config['name']}: {e}") |
|
return None |
|
|
|
def load_all_models(self): |
|
with ThreadPoolExecutor(max_workers=min(len(model_configs), cpu_count())) as executor: |
|
futures = [executor.submit(self.load_model, config) for config in model_configs] |
|
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"): |
|
future.result() |
|
return self.models |
|
|
|
|
|
model_manager = ModelManager() |
|
model_manager.load_all_models() |
|
global_data['models'] = model_manager.models |
|
|
|
|
|
class ChatRequest(BaseModel): |
|
message: str |
|
top_k: int = 50 |
|
top_p: float = 0.95 |
|
temperature: float = 0.7 |
|
|
|
|
|
@lru_cache(maxsize=20000) |
|
def generate_chat_response(request: ChatRequest, model_name: str): |
|
cache_key = f"{request.message}_{model_name}" |
|
|
|
if cache_key in cache: |
|
return cache[cache_key] |
|
|
|
model = global_data['models'].get(model_name) |
|
if not model: |
|
return {"response": "Error: Modelo no encontrado.", "literal": request.message, "model_name": model_name} |
|
|
|
try: |
|
user_input = normalize_input(request.message) |
|
response = model.create_chat_completion( |
|
messages=[{"role": "user", "content": user_input}], |
|
top_k=request.top_k, |
|
top_p=request.top_p, |
|
temperature=request.temperature |
|
) |
|
reply = response['choices'][0]['message']['content'] |
|
|
|
|
|
cache[cache_key] = {"response": reply, "literal": user_input, "model_name": model_name} |
|
|
|
return cache[cache_key] |
|
except Exception as e: |
|
logging.error(f"Error en la generaci贸n de respuesta con el modelo {model_name}: {e}") |
|
return {"response": f"Error: {str(e)}", "literal": user_input, "model_name": model_name} |
|
|
|
def normalize_input(input_text): |
|
return input_text.strip().lower() |
|
|
|
def remove_duplicates(text): |
|
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text) |
|
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text) |
|
text = text.replace('[/INST]', '') |
|
lines = text.split('\n') |
|
unique_lines = list(dict.fromkeys(lines)) |
|
return '\n'.join(unique_lines).strip() |
|
|
|
def remove_repetitive_responses(responses): |
|
seen = set() |
|
unique_responses = [] |
|
for response in responses: |
|
normalized_response = remove_duplicates(response['response']) |
|
if normalized_response not in seen: |
|
seen.add(normalized_response) |
|
unique_responses.append(response) |
|
return unique_responses |
|
|
|
def select_best_response(responses): |
|
responses = remove_repetitive_responses(responses) |
|
responses = [remove_duplicates(response['response']) for response in responses] |
|
unique_responses = list(set(responses)) |
|
coherent_responses = filter_by_coherence(unique_responses) |
|
best_response = filter_by_similarity(coherent_responses) |
|
return best_response |
|
|
|
def filter_by_coherence(responses): |
|
responses.sort(key=len, reverse=True) |
|
return responses |
|
|
|
def filter_by_similarity(responses): |
|
best_response = responses[0] |
|
for i in range(1, len(responses)): |
|
ratio = SequenceMatcher(None, best_response, responses[i]).ratio() |
|
if ratio < 0.9: |
|
best_response = responses[i] |
|
break |
|
return best_response |
|
|
|
def worker_function(model_name, request, response_queue): |
|
try: |
|
response = generate_chat_response(request, model_name) |
|
response_queue.put((model_name, response)) |
|
except Exception as e: |
|
logging.error(f"Error en la generaci贸n de respuesta con el modelo {model_name}: {e}") |
|
response_queue.put((model_name, {"response": f"Error: {str(e)}", "literal": request.message, "model_name": model_name})) |
|
|
|
@app.post("/generate_chat") |
|
async def generate_chat(request: ChatRequest): |
|
if not request.message.strip(): |
|
raise HTTPException(status_code=400, detail="The message cannot be empty.") |
|
|
|
responses = [] |
|
num_models = len(global_data['models']) |
|
response_queue = queue.Queue() |
|
|
|
with ThreadPoolExecutor(max_workers=min(num_models, cpu_count())) as executor: |
|
futures = [executor.submit(worker_function, model_name, request, response_queue) for model_name in global_data['models']] |
|
for future in tqdm(as_completed(futures), total=num_models, desc="Generando respuestas", unit="modelo"): |
|
future.result() |
|
|
|
while not response_queue.empty(): |
|
model_name, response = response_queue.get() |
|
responses.append(response) |
|
|
|
best_response = select_best_response(responses) |
|
|
|
return { |
|
"best_response": best_response, |
|
"all_responses": responses |
|
} |
|
|
|
|
|
def pre_load_models(): |
|
for model_name, model in global_data['models'].items(): |
|
model._load_model() |
|
|
|
pre_load_models() |
|
|
|
|
|
def optimize_model_loading(): |
|
|
|
batch_size = min(len(model_configs), cpu_count() * 2) |
|
for i in range(0, len(model_configs), batch_size): |
|
batch_configs = model_configs[i:i + batch_size] |
|
with ThreadPoolExecutor(max_workers=batch_size) as executor: |
|
futures = [executor.submit(model_manager.load_model, config) for config in batch_configs] |
|
for future in tqdm(as_completed(futures), total=len(batch_configs), desc="Optimizando carga de modelos", unit="modelo"): |
|
try: |
|
model = future.result() |
|
global_data['models'][batch_configs[futures.index(future)]['name']] = model |
|
except Exception as e: |
|
logging.error(f"Error al optimizar la carga del modelo: {e}") |
|
|
|
optimize_model_loading() |
|
|
|
|
|
def parallelize_response_generation(request: ChatRequest): |
|
response_queue = queue.Queue() |
|
with ThreadPoolExecutor(max_workers=min(len(global_data['models']), cpu_count())) as executor: |
|
futures = [executor.submit(worker_function, model_name, request, response_queue) for model_name in global_data['models']] |
|
for future in tqdm(as_completed(futures), total=len(futures), desc="Generando respuestas en paralelo", unit="modelo"): |
|
future.result() |
|
|
|
responses = [] |
|
while not response_queue.empty(): |
|
responses.append(response_queue.get()) |
|
return responses |
|
|
|
@app.post("/generate_chat_parallel") |
|
async def generate_chat_parallel(request: ChatRequest): |
|
if not request.message.strip(): |
|
raise HTTPException(status_code=400, detail="The message cannot be empty.") |
|
|
|
responses = parallelize_response_generation(request) |
|
best_response = select_best_response(responses) |
|
|
|
return { |
|
"best_response": best_response, |
|
"all_responses": responses |
|
} |
|
|
|
|
|
def optimize_memory_usage(): |
|
import gc |
|
gc.collect() |
|
|
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |
|
|