Spaces:
Running
Running
File size: 8,999 Bytes
773c7bd 376b5d9 773c7bd 376b5d9 773c7bd 12802b8 f784787 376b5d9 12802b8 773c7bd 12802b8 f784787 1b61679 773c7bd d270640 773c7bd c5feb16 773c7bd c5feb16 773c7bd 1b61679 773c7bd f58d262 12802b8 f58d262 6f5b5a3 24e9d34 773c7bd f58d262 773c7bd c837795 f58d262 d270640 c837795 f58d262 773c7bd c837795 773c7bd c837795 d270640 f58d262 4f420c4 c837795 773c7bd c837795 773c7bd c837795 773c7bd c837795 f58d262 d270640 773c7bd f58d262 c837795 f58d262 12802b8 c837795 12802b8 f58d262 c837795 d270640 c837795 d270640 f58d262 12802b8 6f5b5a3 12802b8 c837795 773c7bd c837795 773c7bd c837795 773c7bd c837795 f58d262 d270640 773c7bd c837795 376b5d9 d270640 376b5d9 773c7bd 7ca618f 773c7bd d270640 773c7bd d270640 773c7bd 1b61679 773c7bd 1b61679 773c7bd f58d262 12802b8 d270640 4f420c4 f58d262 773c7bd 12802b8 773c7bd 5d8cb3b 773c7bd 4f420c4 d270640 4f420c4 773c7bd d270640 773c7bd 376b5d9 773c7bd 376b5d9 773c7bd d270640 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import csv
import datetime
import os
import re
import time
import uuid
from io import StringIO
import gradio as gr
import nltk
import numpy as np
import pyrubberband
import spaces
import torch
import torchaudio
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from nltk.sentiment import SentimentIntensityAnalyzer
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from vinorm import TTSnorm
nltk.download('vader_lexicon')
os.system("python -m unidic download")
os.system('nvidia-smi')
HF_TOKEN = None
api = HfApi(token=HF_TOKEN)
checkpoint_dir = "model/"
repo_id = "capleaf/viXTTS"
use_deepspeed = False
os.makedirs(checkpoint_dir, exist_ok=True)
required_files = ["model.pth", "config.json", "vocab.json", "speakers_xtts.pth"]
files_in_dir = os.listdir(checkpoint_dir)
if not all(file in files_in_dir for file in required_files):
snapshot_download(
repo_id=repo_id,
repo_type="model",
local_dir=checkpoint_dir,
)
hf_hub_download(
repo_id="coqui/XTTS-v2",
filename="speakers_xtts.pth",
local_dir=checkpoint_dir,
)
xtts_config = os.path.join(checkpoint_dir, "config.json")
config = XttsConfig()
config.load_json(xtts_config)
MODEL = Xtts.init_from_config(config)
MODEL.load_checkpoint(
config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed
)
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
MODEL.to(device)
supported_languages = config.languages
if not "vi" in supported_languages:
supported_languages.append("vi")
if not "es-AR" in supported_languages:
supported_languages.append("es-AR")
def normalize_vietnamese_text(text):
text = (
TTSnorm(text, unknown=False, lower=False, rule=True)
.replace("..", ".")
.replace("!.", "!")
.replace("?.", "?")
.replace(" .", ".")
.replace(" ,", ",")
.replace('"', "")
.replace("'", "")
.replace("AI", "Ây Ai")
.replace("A.I", "Ây Ai")
)
return text
def analyze_sentiment(text):
sia = SentimentIntensityAnalyzer()
scores = sia.polarity_scores(text)
return scores['compound']
def change_pitch(audio_data, sampling_rate, sentiment):
semitones = sentiment * 2
return pyrubberband.pitch_shift(audio_data, sampling_rate, semitones)
def apply_distortion(audio_data, sentiment):
distortion_factor = abs(sentiment) * 0.5
return audio_data * (1 + distortion_factor * np.random.randn(len(audio_data)))
@spaces.GPU(duration=0)
def predict(
prompt,
language,
audio_file_pth,
normalize_text=True,
):
if language not in supported_languages:
metrics_text = gr.Warning(
f"El idioma seleccionado ({language}) no está disponible. Por favor, elige uno de la lista."
)
return (None, metrics_text)
speaker_wav = audio_file_pth
if len(prompt) < 2:
metrics_text = gr.Warning("Por favor, introduce un texto más largo.")
return (None, metrics_text)
try:
metrics_text = ""
t_latent = time.time()
try:
(
gpt_cond_latent,
speaker_embedding,
) = MODEL.get_conditioning_latents(
audio_path=speaker_wav,
gpt_cond_len=30,
gpt_cond_chunk_len=4,
max_ref_length=60,
)
except Exception as e:
print("Speaker encoding error", str(e))
metrics_text = gr.Warning(
"¿Has activado el micrófono? Parece que hay un problema con la referencia de audio."
)
return (None, metrics_text)
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
if normalize_text and language == "vi":
prompt = normalize_vietnamese_text(prompt)
sentiment = analyze_sentiment(prompt)
temperature = 0.75 + sentiment * 0.2
temperature = max(0.5, min(temperature, 1.0))
t0 = time.time()
out = MODEL.inference(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
repetition_penalty=5.0,
temperature=temperature,
enable_text_splitting=True,
)
inference_time = time.time() - t0
metrics_text += (
f"Tiempo de generación de audio: {round(inference_time*1000)} milisegundos\n"
)
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
metrics_text += f"Factor de tiempo real (RTF): {real_time_factor:.2f}\n"
audio_data = np.array(out["wav"])
modified_audio = change_pitch(audio_data, 24000, sentiment)
modified_audio = apply_distortion(modified_audio, sentiment)
torchaudio.save("output.wav", torch.tensor(modified_audio).unsqueeze(0), 24000)
except RuntimeError as e:
if "device-side assert" in str(e):
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
error_data = [
error_time,
prompt,
language,
audio_file_pth,
]
error_data = [str(e) if type(e) != str else e for e in error_data]
write_io = StringIO()
csv.writer(write_io).writerows([error_data])
csv_upload = write_io.getvalue().encode()
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
error_api = HfApi()
error_api.upload_file(
path_or_fileobj=csv_upload,
path_in_repo=filename,
repo_id="coqui/xtts-flagged-dataset",
repo_type="dataset",
)
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
error_api = HfApi()
error_api.upload_file(
path_or_fileobj=speaker_wav,
path_in_repo=speaker_filename,
repo_id="coqui/xtts-flagged-dataset",
repo_type="dataset",
)
space = api.get_space_runtime(repo_id=repo_id)
if space.stage != "BUILDING":
api.restart_space(repo_id=repo_id)
else:
if "Failed to decode" in str(e):
metrics_text = gr.Warning(
metrics_text="Parece que hay un problema con la referencia de audio. ¿Has activado el micrófono?"
)
else:
metrics_text = gr.Warning(
"Se ha producido un error inesperado. Por favor, inténtalo de nuevo."
)
return (None, metrics_text)
return ("output.wav", metrics_text)
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Row():
with gr.Column():
gr.Markdown(
"""
# viXTTS Demo ✨
"""
)
with gr.Column():
pass
with gr.Row():
with gr.Column():
input_text_gr = gr.Textbox(
label="Texto a convertir a voz",
value="Hola, soy un modelo de texto a voz.",
)
language_gr = gr.Dropdown(
label="Idioma",
choices=[
"es-AR",
"vi",
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh-cn",
"ja",
"ko",
"hu",
"hi",
],
max_choices=1,
value="es-AR",
)
normalize_text = gr.Checkbox(
label="Normalizar texto en vietnamita",
info="Solo aplicable al idioma vietnamita",
value=True,
)
ref_gr = gr.Audio(
label="Audio de referencia (opcional)",
type="filepath",
value="model/samples/nu-luu-loat.wav",
)
tts_button = gr.Button(
"Generar voz 🗣️🔥",
elem_id="send-btn",
visible=True,
variant="primary",
)
with gr.Column():
audio_gr = gr.Audio(label="Audio generado", autoplay=True)
out_text_gr = gr.Text(label="Métricas")
tts_button.click(
predict,
[
input_text_gr,
language_gr,
ref_gr,
normalize_text,
],
outputs=[audio_gr, out_text_gr],
api_name="predict",
)
demo.queue()
demo.launch(debug=True, show_api=True, share=True) |