File size: 8,999 Bytes
773c7bd
 
376b5d9
773c7bd
376b5d9
 
773c7bd
 
 
12802b8
 
 
f784787
376b5d9
 
 
12802b8
773c7bd
 
 
 
12802b8
f784787
1b61679
773c7bd
d270640
773c7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5feb16
773c7bd
c5feb16
 
 
 
773c7bd
 
 
 
1b61679
 
773c7bd
f58d262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12802b8
 
 
 
 
 
 
 
f58d262
6f5b5a3
 
 
 
24e9d34
773c7bd
 
 
 
f58d262
773c7bd
c837795
f58d262
d270640
c837795
f58d262
773c7bd
c837795
773c7bd
c837795
d270640
f58d262
4f420c4
c837795
 
 
773c7bd
 
c837795
773c7bd
 
c837795
 
 
 
 
773c7bd
c837795
 
 
f58d262
d270640
773c7bd
f58d262
c837795
 
 
f58d262
 
 
12802b8
 
 
 
 
c837795
 
 
 
 
 
 
12802b8
f58d262
c837795
 
 
d270640
c837795
 
d270640
f58d262
12802b8
 
 
 
6f5b5a3
 
12802b8
c837795
 
 
 
 
 
773c7bd
 
c837795
 
 
 
 
 
 
 
 
 
 
 
 
 
773c7bd
 
c837795
 
 
 
 
 
 
773c7bd
 
c837795
 
 
 
 
 
f58d262
d270640
773c7bd
c837795
376b5d9
d270640
376b5d9
 
 
773c7bd
 
 
 
 
 
 
7ca618f
773c7bd
 
 
 
 
 
 
 
d270640
 
773c7bd
 
d270640
773c7bd
1b61679
773c7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b61679
773c7bd
f58d262
12802b8
d270640
4f420c4
f58d262
773c7bd
12802b8
773c7bd
5d8cb3b
773c7bd
4f420c4
d270640
4f420c4
 
 
 
773c7bd
 
d270640
 
773c7bd
 
 
 
 
 
 
376b5d9
773c7bd
376b5d9
 
773c7bd
 
 
d270640
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import csv
import datetime
import os
import re
import time
import uuid
from io import StringIO

import gradio as gr
import nltk
import numpy as np
import pyrubberband
import spaces
import torch
import torchaudio
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from nltk.sentiment import SentimentIntensityAnalyzer
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from vinorm import TTSnorm

nltk.download('vader_lexicon')
os.system("python -m unidic download")
os.system('nvidia-smi')

HF_TOKEN = None
api = HfApi(token=HF_TOKEN)

checkpoint_dir = "model/"
repo_id = "capleaf/viXTTS"
use_deepspeed = False

os.makedirs(checkpoint_dir, exist_ok=True)

required_files = ["model.pth", "config.json", "vocab.json", "speakers_xtts.pth"]
files_in_dir = os.listdir(checkpoint_dir)
if not all(file in files_in_dir for file in required_files):
    snapshot_download(
        repo_id=repo_id,
        repo_type="model",
        local_dir=checkpoint_dir,
    )
    hf_hub_download(
        repo_id="coqui/XTTS-v2",
        filename="speakers_xtts.pth",
        local_dir=checkpoint_dir,
    )

xtts_config = os.path.join(checkpoint_dir, "config.json")
config = XttsConfig()
config.load_json(xtts_config)
MODEL = Xtts.init_from_config(config)
MODEL.load_checkpoint(
    config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed
)

if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")
MODEL.to(device)

supported_languages = config.languages
if not "vi" in supported_languages:
    supported_languages.append("vi")
if not "es-AR" in supported_languages:
    supported_languages.append("es-AR")

def normalize_vietnamese_text(text):
    text = (
        TTSnorm(text, unknown=False, lower=False, rule=True)
        .replace("..", ".")
        .replace("!.", "!")
        .replace("?.", "?")
        .replace(" .", ".")
        .replace(" ,", ",")
        .replace('"', "")
        .replace("'", "")
        .replace("AI", "Ây Ai")
        .replace("A.I", "Ây Ai")
    )
    return text

def analyze_sentiment(text):
    sia = SentimentIntensityAnalyzer()
    scores = sia.polarity_scores(text)
    return scores['compound']

def change_pitch(audio_data, sampling_rate, sentiment):
    semitones = sentiment * 2 
    return pyrubberband.pitch_shift(audio_data, sampling_rate, semitones)

def apply_distortion(audio_data, sentiment):
    distortion_factor = abs(sentiment) * 0.5 
    return audio_data * (1 + distortion_factor * np.random.randn(len(audio_data)))

@spaces.GPU(duration=0)
def predict(
    prompt,
    language,
    audio_file_pth,
    normalize_text=True,
):
    if language not in supported_languages:
        metrics_text = gr.Warning(
            f"El idioma seleccionado ({language}) no está disponible. Por favor, elige uno de la lista."
        )
        return (None, metrics_text)

    speaker_wav = audio_file_pth

    if len(prompt) < 2:
        metrics_text = gr.Warning("Por favor, introduce un texto más largo.")
        return (None, metrics_text)

    try:
        metrics_text = ""
        t_latent = time.time()

        try:
            (
                gpt_cond_latent,
                speaker_embedding,
            ) = MODEL.get_conditioning_latents(
                audio_path=speaker_wav,
                gpt_cond_len=30,
                gpt_cond_chunk_len=4,
                max_ref_length=60,
            )

        except Exception as e:
            print("Speaker encoding error", str(e))
            metrics_text = gr.Warning(
                "¿Has activado el micrófono? Parece que hay un problema con la referencia de audio."
            )
            return (None, metrics_text)

        prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)

        if normalize_text and language == "vi":
            prompt = normalize_vietnamese_text(prompt)

        sentiment = analyze_sentiment(prompt)
        
        temperature = 0.75 + sentiment * 0.2
        temperature = max(0.5, min(temperature, 1.0))

        t0 = time.time()
        out = MODEL.inference(
            prompt,
            language,
            gpt_cond_latent,
            speaker_embedding,
            repetition_penalty=5.0,
            temperature=temperature,
            enable_text_splitting=True,
        )
        inference_time = time.time() - t0
        metrics_text += (
            f"Tiempo de generación de audio: {round(inference_time*1000)} milisegundos\n"
        )
        real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
        metrics_text += f"Factor de tiempo real (RTF): {real_time_factor:.2f}\n"

        audio_data = np.array(out["wav"])

        modified_audio = change_pitch(audio_data, 24000, sentiment)

        modified_audio = apply_distortion(modified_audio, sentiment)
        
        torchaudio.save("output.wav", torch.tensor(modified_audio).unsqueeze(0), 24000)

    except RuntimeError as e:
        if "device-side assert" in str(e):
            error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
            error_data = [
                error_time,
                prompt,
                language,
                audio_file_pth,
            ]
            error_data = [str(e) if type(e) != str else e for e in error_data]
            write_io = StringIO()
            csv.writer(write_io).writerows([error_data])
            csv_upload = write_io.getvalue().encode()

            filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
            error_api = HfApi()
            error_api.upload_file(
                path_or_fileobj=csv_upload,
                path_in_repo=filename,
                repo_id="coqui/xtts-flagged-dataset",
                repo_type="dataset",
            )

            speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
            error_api = HfApi()
            error_api.upload_file(
                path_or_fileobj=speaker_wav,
                path_in_repo=speaker_filename,
                repo_id="coqui/xtts-flagged-dataset",
                repo_type="dataset",
            )

            space = api.get_space_runtime(repo_id=repo_id)
            if space.stage != "BUILDING":
                api.restart_space(repo_id=repo_id)

        else:
            if "Failed to decode" in str(e):
                metrics_text = gr.Warning(
                    metrics_text="Parece que hay un problema con la referencia de audio. ¿Has activado el micrófono?"
                )
            else:
                metrics_text = gr.Warning(
                    "Se ha producido un error inesperado. Por favor, inténtalo de nuevo."
                )
            return (None, metrics_text)
    return ("output.wav", metrics_text)


with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                """
                # viXTTS Demo ✨
                """
            )
        with gr.Column():
            pass

    with gr.Row():
        with gr.Column():
            input_text_gr = gr.Textbox(
                label="Texto a convertir a voz",
                value="Hola, soy un modelo de texto a voz.",
            )
            language_gr = gr.Dropdown(
                label="Idioma",
                choices=[
                    "es-AR",
                    "vi",
                    "en",
                    "es",
                    "fr",
                    "de",
                    "it",
                    "pt",
                    "pl",
                    "tr",
                    "ru",
                    "nl",
                    "cs",
                    "ar",
                    "zh-cn",
                    "ja",
                    "ko",
                    "hu",
                    "hi",
                ],
                max_choices=1,
                value="es-AR",
            )
            normalize_text = gr.Checkbox(
                label="Normalizar texto en vietnamita",
                info="Solo aplicable al idioma vietnamita",
                value=True,
            )
            ref_gr = gr.Audio(
                label="Audio de referencia (opcional)",
                type="filepath",
                value="model/samples/nu-luu-loat.wav",
            )
            tts_button = gr.Button(
                "Generar voz 🗣️🔥",
                elem_id="send-btn",
                visible=True,
                variant="primary",
            )

        with gr.Column():
            audio_gr = gr.Audio(label="Audio generado", autoplay=True)
            out_text_gr = gr.Text(label="Métricas")

    tts_button.click(
        predict,
        [
            input_text_gr,
            language_gr,
            ref_gr,
            normalize_text,
        ],
        outputs=[audio_gr, out_text_gr],
        api_name="predict",
    )

demo.queue()
demo.launch(debug=True, show_api=True, share=True)