UjjwalKGupta's picture
Update app.py
7cc54d0 verified
raw
history blame
8.94 kB
import os
import ee
import geemap
import json
import geopandas as gpd
import streamlit as st
import pandas as pd
import geojson
from shapely.geometry import Polygon, MultiPolygon, shape, Point
from io import BytesIO
import fiona
from shapely import wkb
from shapely.ops import transform
import leafmap
# Enable fiona driver
fiona.drvsupport.supported_drivers['LIBKML'] = 'rw'
#Intialize EE library
# Access secret
earthengine_credentials = os.environ.get("EE_Authentication")
# Initialize Earth Engine with the secret credentials
os.makedirs(os.path.expanduser("~/.config/earthengine/"), exist_ok=True)
with open(os.path.expanduser("~/.config/earthengine/credentials"), "w") as f:
f.write(earthengine_credentials)
ee.Initialize(project='in793-aq-nb-24330048')
# Functions
def convert_to_2d_geometry(geom):
if geom is None:
return None
elif geom.has_z:
return transform(lambda x, y, z: (x, y), geom)
else:
return geom
def validate_KML_file(gdf):
if gdf.empty:
return {
'corner_points': None,
'area': None,
'perimeter': None,
'is_single_polygon': False}
polygon_info = {}
# Check if it's a single polygon or multipolygon
if isinstance(gdf.iloc[0].geometry, Polygon) and len(gdf)==1:
polygon_info['is_single_polygon'] = True
polygon = convert_to_2d_geometry(gdf.iloc[0].geometry)
# Calculate corner points in GCS projection
polygon_info['corner_points'] = [
(polygon.bounds[0], polygon.bounds[1]),
(polygon.bounds[2], polygon.bounds[1]),
(polygon.bounds[2], polygon.bounds[3]),
(polygon.bounds[0], polygon.bounds[3])
]
# Calculate Centroids in GCS projection
polygon_info['centroid'] = polygon.centroid.coords[0]
# Calculate area and perimeter in EPSG:7761 projection
# It is a local projection defined for Gujarat as per NNRMS
polygon = gdf.to_crs(epsg=7761).geometry.iloc[0]
polygon_info['area'] = polygon.area
polygon_info['perimeter'] = polygon.length
else:
polygon_info['is_single_polygon'] = False
polygon_info['corner_points'] = None
polygon_info['area'] = None
polygon_info['perimeter'] = None
polygon_info['centroid'] = None
ValueError("Input must be a single Polygon.")
return polygon_info
# Calculate NDVI as Normalized Index
def reduce_zonal_ndvi(image, ee_object):
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
image = image.addBands(ndvi)
image = image.select('NDVI')
reduced = image.reduceRegion(
reducer=ee.Reducer.mean(),
geometry=ee_object.geometry(),
scale=10,
maxPixels=1e12
)
return image.set(reduced)
def calculate_NDVI(image):
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
return ndvi
# Get Zonal NDVI
def get_zonal_ndvi(collection, geom_ee_object):
reduced_collection = collection.map(lambda image: reduce_zonal_ndvi(image, ee_object=geom_ee_object))
stats_list = reduced_collection.aggregate_array('NDVI').getInfo()
filenames = reduced_collection.aggregate_array('system:index').getInfo()
dates = [f.split("_")[0].split('T')[0] for f in reduced_collection.aggregate_array('system:index').getInfo()]
df = pd.DataFrame({'NDVI': stats_list, 'Date': dates, 'Imagery': filenames})
return df
def get_zonal_ndviYoY(collection, geom_ee_object):
ndvi_collection = collection.map(lambda image: calculate_NDVI)
max_ndvi = ndvi_collection.max()
reduced_max_ndvi = max_ndvi.reduceRegion(
reducer=ee.Reducer.mean(),
geometry=ee_object.geometry(),
scale=10,
maxPixels=1e12)
return reduced_max_ndvi
# put title in center
st.markdown("""
<style>
h1 {
text-align: center;
}
</style>
""", unsafe_allow_html=True)
st.title("Mean NDVI Calculator")
# get the start and end date from the user
col = st.columns(2)
start_date = col[0].date_input("Start Date", value=pd.to_datetime('2021-01-01'))
end_date = col[1].date_input("End Date", value=pd.to_datetime('2021-01-30'))
# Check if start and end dates are valid
if start_date>end_date:
st.stop()
start_date = start_date.strftime("%Y-%m-%d")
end_date = end_date.strftime("%Y-%m-%d")
max_cloud_cover = st.number_input("Max Cloud Cover", value=20)
# Get the geojson file from the user
uploaded_file = st.file_uploader("Upload KML/GeoJSON file", type=["geojson", "kml"])
if uploaded_file is not None:
try:
if uploaded_file.name.endswith("kml"):
gdf = gpd.read_file(BytesIO(uploaded_file.read()), driver='LIBKML')
elif uploaded_file.name.endswith("geojson"):
gdf = gpd.read_file(uploaded_file)
except Exception as e:
st.write('ValueError: "Input must be a valid KML file."')
st.stop()
# Validate KML File
polygon_info = validate_KML_file(gdf)
if polygon_info["is_single_polygon"]==True:
st.write("Uploaded KML file has single polygon geometry.")
st.write("It has bounds as {0:.6f}, {1:.6f}, {2:.6f}, and {3:.6f}.".format(
polygon_info['corner_points'][0][0],
polygon_info['corner_points'][0][1],
polygon_info['corner_points'][2][0],
polygon_info['corner_points'][2][1]
))
st.write("It has centroid at ({0:.6f}, {1:.6f}).".format(polygon_info['centroid'][0], polygon_info['centroid'][1]))
st.write("It has area of {:.2f} ha.".format(polygon_info['area']/10000))
st.write("It has perimeter of {:.2f} meters.".format(polygon_info['perimeter']))
#Change geometry of polygon 3D to 2D for ee
gdf.loc[0, "geometry"] = convert_to_2d_geometry(gdf.iloc[0].geometry)
#Read KML file
geom_ee_object = ee.FeatureCollection(json.loads(gdf.to_json()))
# Add buffer of 100m to ee_object
buffered_ee_object = geom_ee_object.map(lambda feature: feature.buffer(100))
# Filter data based on the date, bounds, cloud coverage and select NIR and Red Band
collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', max_cloud_cover)).filter(ee.Filter.date(start_date, end_date)).select(['B4', 'B8'])
# Get Zonal NDVI based on collection and geometries (Original KML and Buffered KML)
df_geom = get_zonal_ndvi(collection.filterBounds(geom_ee_object), geom_ee_object)
df_buffered_geom = get_zonal_ndvi(collection.filterBounds(buffered_ee_object), buffered_ee_object)
# Merge both Zonalstats and create resultant dataframe
resultant_df = pd.merge(df_geom, df_buffered_geom, on='Date', how='inner')
resultant_df = resultant_df.rename(columns={'NDVI_x': 'AvgNDVI_Inside', 'NDVI_y': 'Avg_NDVI_Buffer', 'Imagery_x': 'Imagery'})
resultant_df['Ratio'] = resultant_df['AvgNDVI_Inside'] / resultant_df['Avg_NDVI_Buffer']
resultant_df.drop(columns=['Imagery_y'], inplace=True)
# Re-order the columns of the resultant dataframe
resultant_df = resultant_df[['Date', 'Imagery', 'AvgNDVI_Inside', 'Avg_NDVI_Buffer', 'Ratio']]
# Write the final table
st.write(resultant_df)
# plot the time series
st.write("Time Series Plot")
st.line_chart(resultant_df[['AvgNDVI_Inside', 'Avg_NDVI_Buffer', 'Date']].set_index('Date'))
####### YoY Profile ########
start_year = 2017
end_year = 2023
max_ndvi_geoms = []
max_ndvi_buffered_geoms = []
for year in range(start_year, end_year+1):
start_ddmm = start_date[:4] + str(year)
end_ddmm = end_date[:4] + str(year)
# Filter data based on the date, bounds, cloud coverage and select NIR and Red Band
collection = ee.ImageCollection("COPERNICUS/S2_SR_HARMONIZED").filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', max_cloud_cover)).filter(ee.Filter.date(start_ddmm, end_ddmm)).select(['B4', 'B8'])
# Get Zonal NDVI based on collection and geometries (Original KML and Buffered KML)
max_ndvi_geoms.append(get_zonal_ndviYoY(collection.filterBounds(geom_ee_object), geom_ee_object))
max_ndvi_buffered_geoms.append(get_zonal_ndviYoY(collection.filterBounds(buffered_ee_object), buffered_ee_object))
st.write(max_ndvi_geoms)
st.write(max_ndvi_buffered_geoms)
# Visualize map on ESRI basemap
st.write("Map Visualization")
# Create a Leafmap object
m = leafmap.Map()
# Add ESRI latest imagery basemap and polygon
m.add_basemap("ESRI/WorldImagery")
m.add_polygon(gdf.iloc[0].geometry, "Polygon", color="red", fill_opacity=0.5)
# Display the map
m.to_streamlit(height=600)
else:
st.write('ValueError: "Input must have single polygon geometry"')
st.write(gdf)
st.stop()