File size: 47,205 Bytes
17ad9c6 610dd7d 17ad9c6 610dd7d 17ad9c6 2b34827 f6c4512 17ad9c6 5017cba 17ad9c6 5caafe7 17ad9c6 5caafe7 17ad9c6 ed73032 b9b1527 17ad9c6 ed73032 17ad9c6 5caafe7 17ad9c6 5caafe7 17ad9c6 b9b1527 17ad9c6 b9b1527 762653c 17ad9c6 5caafe7 17ad9c6 b9b1527 17ad9c6 ed73032 b9b1527 5caafe7 17ad9c6 5caafe7 d25b399 5caafe7 ed73032 5caafe7 ed73032 5caafe7 ed73032 5caafe7 203af54 5caafe7 4d1e834 5caafe7 4d1e834 5caafe7 203af54 5caafe7 203af54 5caafe7 203af54 5caafe7 203af54 5caafe7 203af54 5caafe7 1763275 5caafe7 610dd7d 5caafe7 1763275 5caafe7 17ad9c6 5caafe7 1763275 5caafe7 1763275 d25b399 1763275 5caafe7 1763275 17ad9c6 1763275 762653c d25b399 b9b1527 17ad9c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 |
import os
import logging
from typing import Dict, List, Optional
from functools import lru_cache
import re
import gradio as gr
try:
# Assuming vector_db.py exists in the same directory or is installed
from vector_db import VectorDatabase
except ImportError:
print("Error: Could not import VectorDatabase from vector_db.py.")
print("Please ensure vector_db.py exists in the same directory and is correctly defined.")
# Exit if critical dependency is missing at import time
exit(1)
try:
from langchain_openai import ChatOpenAI
except ImportError:
print("Error: langchain-openai not found. Please install it: pip install langchain-openai")
# Exit if critical dependency is missing at import time
exit(1)
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
# Suppress warnings for cleaner console output
import warnings
warnings.filterwarnings("ignore", category=SyntaxWarning)
warnings.filterwarnings("ignore", category=UserWarning, message=".*You are using gradio version.*")
warnings.filterwarnings("ignore", category=DeprecationWarning)
# Enhanced logging configuration
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s'
)
# --- RAGSystem Class (Processing Logic - KEPT INTACT AS REQUESTED) ---
class RAGSystem:
def __init__(self, vector_db: Optional[VectorDatabase] = None):
logging.info("Initializing RAGSystem")
self.vector_db = vector_db if vector_db else VectorDatabase()
self.llm = None
self.chain = None
self.prompt_template_str = """You are a legal assistant specializing in tenant rights and landlord-tenant laws. Your goal is to provide accurate, detailed, and helpful answers grounded in legal authority. Use the provided statutes as the primary source when available. If no relevant statutes are found in the context, rely on your general knowledge to provide a pertinent and practical response, clearly indicating when you are doing so and prioritizing state-specific information over federal laws for state-specific queries.
Instructions:
* Use the context and statutes as the primary basis for your answer when available.
* For state-specific queries, prioritize statutes or legal principles from the specified state over federal laws.
* Cite relevant statutes (e.g., (AS Β§ 34.03.220(a)(2))) explicitly in your answer when applicable.
* If multiple statutes apply, list all relevant ones.
* If no specific statute is found in the context, state this clearly (e.g., 'No specific statute was found in the provided context'), then provide a general answer based on common legal principles or practices, marked as such.
* Include practical examples or scenarios to enhance clarity and usefulness.
* Use bullet points or numbered lists for readability when appropriate.
* Maintain a professional and neutral tone.
Question: {query}
State: {state}
Statutes from context:
{statutes}
Context information:
--- START CONTEXT ---
{context}
--- END CONCONTEXT ---
Answer:"""
self.prompt_template = PromptTemplate(
input_variables=["query", "context", "state", "statutes"],
template=self.prompt_template_str
)
logging.info("RAGSystem initialized.")
def extract_statutes(self, text: str) -> str:
statute_pattern = r'\b(?:[A-Z]{2,}\.?\s+(?:Rev\.\s+)?Stat\.?|Code(?:\s+Ann\.?)?|Ann\.?\s+Laws|Statutes|CCP|USC|ILCS|Civ\.\s+Code|Penal\s+Code|Gen\.\s+Oblig\.\s+Law|R\.?S\.?|P\.?L\.?)\s+Β§\s*[\d\-]+(?:\.\d+)?(?:[\(\w\.\)]+)?|Title\s+\d+\s+USC\s+Β§\s*\d+(?:-\d+)?\b'
statutes = re.findall(statute_pattern, text, re.IGNORECASE)
valid_statutes = []
for statute in statutes:
statute = statute.strip()
if 'Β§' in statute and any(char.isdigit() for char in statute):
if not re.match(r'^\([\w\.]+\)$', statute) and 'http' not in statute:
if len(statute) > 5:
valid_statutes.append(statute)
if valid_statutes:
seen = set()
unique_statutes = [s for s in valid_statutes if not (s.rstrip('.,;') in seen or seen.add(s.rstrip('.,;')))]
logging.info(f"Extracted {len(unique_statutes)} unique statutes.")
return "\n".join(f"- {s}" for s in unique_statutes)
logging.info("No statutes found matching the pattern in the context.")
return "No specific statutes found in the provided context."
def format_llm_response_for_html(self, text: str) -> str:
"""
Formats the LLM's raw text response for display in a Gradio HTML component,
converting Markdown-like elements to HTML. Handles bolding, paragraphs, and lists.
"""
if not text:
return ""
# 1. Convert markdown bolding (**text**) to HTML <b>text</b>
formatted_text = re.sub(r'\*\*(.*?)\*\*', r'<b>\1</b>', text)
# Split the text into blocks based on two or more consecutive newlines
# This separates paragraphs and distinct list blocks.
blocks = re.split(r'\n\s*\n+', formatted_text.strip())
html_output_parts = []
for block in blocks:
block = block.strip()
if not block:
continue
# Check if the block is a list (starts with a list marker on its first non-empty line)
list_lines = block.split('\n')
is_list = False
list_type = None # 'ul' or 'ol'
for line in list_lines:
stripped_line = line.strip()
if stripped_line: # Check first non-empty line
if re.match(r'^[*-]\s*(.*)', stripped_line):
is_list = True
list_type = 'ul'
elif re.match(r'^\d+\.\s*(.*)', stripped_line):
is_list = True
list_type = 'ol'
break # Only need to check the first actual line
if is_list:
# Process as a list
list_html = f'<{list_type}>'
for line in list_lines:
stripped_line = line.strip()
if not stripped_line:
continue # Skip empty lines within a list block
# Extract content after the list marker
if list_type == 'ul':
item_content = re.sub(r'^[*-]\s*', '', stripped_line)
else: # ol
item_content = re.sub(r'^\d+\.\s*', '', stripped_line)
list_html += f'<li>{item_content.strip()}</li>'
list_html += f'</{list_type}>'
html_output_parts.append(list_html)
else:
# Process as a paragraph
# Replace single newlines within the paragraph block with <br>
paragraph_content = block.replace('\n', '<br>')
html_output_parts.append(f'<p>{paragraph_content}</p>')
return ''.join(html_output_parts)
@lru_cache(maxsize=50)
def process_query_cached(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
logging.info(f"Processing query (cache key: '{query}'|'{state}'|key_hidden) with n_results={n_results}")
if not state or state is None: # Removed "Select a state..." from error check as it's not a choice
logging.warning("No valid state provided for query.")
return {"answer": "<div class='error-message'>Error: Please select a valid state.</div>", "context_used": "N/A - Invalid Input"}
if not query or not query.strip():
logging.warning("No query provided.")
return {"answer": "<div class='error-message'>Error: Please enter your question.</div>", "context_used": "N/A - Invalid Input"}
if not openai_api_key or not openai_api_key.strip() or not openai_api_key.startswith("sk-"):
logging.warning("No valid OpenAI API key provided.")
return {"answer": "<div class='error-message'>Error: Please provide a valid OpenAI API key (starting with 'sk-'). Get one from <a href='https://platform.openai.com/api-keys' target='_blank'>OpenAI</a>.</div>", "context_used": "N/A - Invalid Input"}
try:
logging.info("Initializing temporary LLM and Chain for this query...")
temp_llm = ChatOpenAI(
temperature=0.2, openai_api_key=openai_api_key, model_name="gpt-3.5-turbo",
max_tokens=1500, request_timeout=45
)
temp_chain = LLMChain(llm=temp_llm, prompt=self.prompt_template)
logging.info("Temporary LLM and Chain initialized successfully.")
except Exception as e:
logging.error(f"LLM Initialization failed: {str(e)}", exc_info=True)
error_msg = "Error: Failed to initialize AI model. Please check your network connection and API key validity."
if "authentication" in str(e).lower():
error_msg = "Error: OpenAI API Key is invalid or expired. Please check your key."
return {"answer": f"<div class='error-message'>{error_msg}</div><div class='error-details'>Details: {str(e)}</div>", "context_used": "N/A - LLM Init Failed"}
context = "No relevant context found."
statutes_from_context = "Statute retrieval skipped due to context issues."
try:
logging.info(f"Querying Vector DB for query: '{query[:50]}...' in state '{state}'...")
results = self.vector_db.query(query, state=state, n_results=n_results)
logging.info(f"Vector DB query successful for state '{state}'. Processing results...")
context_parts = []
doc_results = results.get("document_results", {})
docs = doc_results.get("documents", [[]])[0]
metadatas = doc_results.get("metadatas", [[]])[0]
if docs and metadatas and len(docs) == len(metadatas):
logging.info(f"Found {len(docs)} document chunks.")
for i, doc_content in enumerate(docs):
metadata = metadatas[i]
state_label = metadata.get('state', 'Unknown State')
chunk_id = metadata.get('chunk_id', 'N/A')
context_parts.append(f"**Source: Document Chunk {chunk_id} (State: {state_label})**\n{doc_content}")
state_results_data = results.get("state_results", {})
state_docs = state_results_data.get("documents", [[]])[0]
state_metadatas = state_results_data.get("metadatas", [[]])[0]
if state_docs and state_metadatas and len(state_docs) == len(state_metadatas):
logging.info(f"Found {len(state_docs)} state summary documents.")
for i, state_doc_content in enumerate(state_docs):
metadata = state_metadatas[i]
state_label = metadata.get('state', state)
context_parts.append(f"**Source: State Summary (State: {state_label})**\n{state_doc_content}")
if context_parts:
context = "\n\n---\n\n".join(context_parts)
logging.info(f"Constructed context with {len(context)} chars.")
try:
statutes_from_context = self.extract_statutes(context)
except Exception as e:
logging.error(f"Error extracting statutes: {e}", exc_info=True)
statutes_from_context = "Error extracting statutes from context."
else:
logging.warning("No relevant context parts found from vector DB query.")
context = "No relevant context could be retrieved from the knowledge base for this query and state. The AI will answer from its general knowledge."
statutes_from_context = "No specific statutes found as no context was retrieved."
except Exception as e:
logging.error(f"Vector DB query/context processing failed: {str(e)}", exc_info=True)
context = f"Warning: Error retrieving documents from the knowledge base ({str(e)}). The AI will attempt to answer from its general knowledge, which may be less specific or accurate."
statutes_from_context = "Statute retrieval skipped due to error retrieving context."
try:
logging.info("Invoking LLMChain with constructed input...")
llm_input = {"query": query, "context": context, "state": state, "statutes": statutes_from_context}
answer_dict = temp_chain.invoke(llm_input)
answer_text = answer_dict.get('text', '').strip()
if not answer_text:
logging.warning("LLM returned an empty answer.")
answer_text = "<div class='error-message'><span class='error-icon'>β οΈ</span>The AI model returned an empty response. This might be due to the query, context limitations, or temporary issues. Please try rephrasing your question or try again later.</div>"
else:
logging.info("LLM generated answer successfully.")
# Apply the formatting function here to convert Markdown-like syntax to HTML
answer_text = self.format_llm_response_for_html(answer_text)
return {"answer": answer_text, "context_used": context}
except Exception as e:
logging.error(f"LLM processing failed: {str(e)}", exc_info=True)
error_message = "Error: AI answer generation failed."
details = f"Details: {str(e)}"
if "authentication" in str(e).lower():
error_message = "Error: Authentication failed. Please double-check your OpenAI API key."
details = ""
elif "rate limit" in str(e).lower():
error_message = "Error: You've exceeded your OpenAI API rate limit or quota. Please check your usage and plan limits, or wait and try again."
details = ""
elif "context length" in str(e).lower():
error_message = "Error: The request was too long for the AI model. This can happen with very complex questions or extensive retrieved context."
details = "Try simplifying your question or asking about a more specific aspect."
elif "timeout" in str(e).lower():
error_message = "Error: The request to the AI model timed out. The service might be busy."
details = "Please try again in a few moments."
formatted_error = f"<div class='error-message'><span class='error-icon'>β</span>{error_message}</div>"
if details:
formatted_error += f"<div class='error-details'>{details}</div>"
return {"answer": formatted_error, "context_used": context}
def process_query(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
return self.process_query_cached(query.strip(), state, openai_api_key.strip(), n_results)
def get_states(self) -> List[str]:
try:
states = self.vector_db.get_states()
if not states:
logging.warning("No states retrieved from vector_db. Returning empty list.")
return []
valid_states = sorted(list(set(s for s in states if s and isinstance(s, str) and s != "Select a state...")))
logging.info(f"Retrieved {len(valid_states)} unique, valid states from VectorDatabase.")
return valid_states
except Exception as e:
logging.error(f"Failed to get states from VectorDatabase: {str(e)}", exc_info=True)
return ["Error: Could not load states"]
def load_pdf(self, pdf_path: str) -> int:
if not os.path.exists(pdf_path):
logging.error(f"PDF file not found at path: {pdf_path}")
raise FileNotFoundError(f"PDF file not found: {pdf_path}")
try:
logging.info(f"Attempting to load/verify data from PDF: {pdf_path}")
# Assuming process_and_load_pdf is part of VectorDatabase and correctly implemented
num_states_processed = self.vector_db.process_and_load_pdf(pdf_path)
doc_count = self.vector_db.document_collection.count()
state_count = self.vector_db.state_collection.count()
total_items = doc_count + state_count
if total_items > 0:
logging.info(f"Vector DB contains {total_items} items ({doc_count} docs, {state_count} states). PDF processed or data already existed.")
current_states = self.get_states()
return len(current_states) if current_states and "Error" not in current_states[0] else 0
else:
logging.warning(f"PDF processing completed, but the vector database appears empty. Check PDF content and processing logs.")
return 0
except Exception as e:
logging.error(f"Failed to load or process PDF '{pdf_path}': {str(e)}", exc_info=True)
raise RuntimeError(f"Failed to process PDF '{pdf_path}': {e}") from e
def gradio_interface(self):
def query_interface_wrapper(api_key: str, query: str, state: str) -> str:
# Basic client-side validation for immediate feedback (redundant but good UX)
if not api_key or not api_key.strip() or not api_key.startswith("sk-"):
return "<div class='error-message'><span class='error-icon'>β οΈ</span>Please provide a valid OpenAI API key (starting with 'sk-'). <a href='https://platform.openai.com/api-keys' target='_blank'>Get yours here</a>.</div>"
if not state or state is None or "Error" in state:
return "<div class='error-message'><span class='error-icon'>β οΈ</span>Please select a valid state from the list.</div>"
if not query or not query.strip():
return "<div class='error-message'><span class='error-icon'>β οΈ</span>Please enter your question in the text box.</div>"
# Call the core processing logic using 'self'
result = self.process_query(query=query, state=state, openai_api_key=api_key)
answer = result.get("answer", "<div class='error-message'><span class='error-icon'>β οΈ</span>An unexpected error occurred.</div>")
# Check if the answer already contains an error message from process_query
if "<div class='error-message'>" in answer:
return answer
else:
formatted_response_content = f"<div class='response-header'><span class='response-icon'>π</span>Response for {state}</div><div class='response-divider'></div><div class='response-content'>{answer}</div>"
return f"<div class='animated-output-content'>{formatted_response_content}</div>"
try:
available_states_list = self.get_states()
print(f"DEBUG: States loaded for selection: {available_states_list}")
radio_choices = available_states_list if available_states_list and "Error" not in available_states_list[0] else ["Error: States unavailable"]
initial_value_radio = radio_choices[0] if radio_choices and "Error" not in radio_choices[0] else None
except Exception as e:
print(f"DEBUG: Error loading states for selection: {e}")
radio_choices = ["Error: Critical failure loading states"]
initial_value_radio = None
example_queries_base = [
["What are the rules for security deposit returns?", "California"],
["Can a landlord enter my apartment without notice?", "New York"],
["My landlord hasn't made necessary repairs. What can I do?", "Texas"],
["How much notice must a landlord give to raise rent?", "Florida"],
["What is an implied warranty of habitability?", "Illinois"]
]
example_queries = []
if radio_choices and "Error" not in radio_choices[0] and len(radio_choices) > 0:
loaded_states_set = set(radio_choices)
example_queries = [ex for ex in example_queries_base if ex[1] in loaded_states_set]
if not example_queries and radio_choices[0] != "Error: States unavailable":
example_queries.append(["What basic rights do tenants have?", radio_choices[0]])
else:
example_queries.append(["What basic rights do tenants have?", "California"])
custom_css = """
/* Import modern fonts */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&family=Poppins:wght@600;700;800&display=swap');
/* CSS Variables for theme consistency */
:root {
/* Light theme colors */
--primary-color: #FF8C00;
--primary-hover: #E07B00;
--primary-light: rgba(255, 140, 0, 0.1);
--primary-border: rgba(255, 140, 0, 0.3);
/* Backgrounds */
--bg-primary: #ffffff;
--bg-secondary: #f8f9fa;
--bg-tertiary: #f1f3f4;
--bg-card: #ffffff;
/* Text colors */
--text-primary: #1a1a1a;
--text-secondary: #6c757d;
--text-muted: #adb5bd;
/* Border colors */
--border-light: #e9ecef;
--border-medium: #dee2e6;
--border-strong: #adb5bd;
/* Status colors */
--success-bg: #d1edff;
--success-border: #0ea5e9;
--success-text: #0369a1;
--error-bg: #fef2f2;
--error-border: #fca5a5;
--error-text: #dc2626;
--warning-bg: #fffbeb;
--warning-border: #fbbf24;
--warning-text: #d97706;
/* Shadows */
--shadow-sm: 0 1px 2px 0 rgba(0, 0, 0, 0.05);
--shadow-md: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
--shadow-lg: 0 10px 15px -3px rgba(0, 0, 0, 0.1), 0 4px 6px -2px rgba(0, 0, 0, 0.05);
--shadow-xl: 0 20px 25px -5px rgba(0, 0, 0, 0.1), 0 10px 10px -5px rgba(0, 0, 0, 0.04);
}
/* Dark theme colors */
@media (prefers-color-scheme: dark) {
:root {
--bg-primary: #1a1a1a;
--bg-secondary: #2d2d2d;
--bg-tertiary: #404040;
--bg-card: #2d2d2d;
--text-primary: #ffffff;
--text-secondary: #a1a1aa;
--text-muted: #71717a;
--border-light: #404040;
--border-medium: #525252;
--border-strong: #737373;
--success-bg: rgba(14, 165, 233, 0.1);
--error-bg: rgba(220, 38, 38, 0.1);
--warning-bg: rgba(217, 119, 6, 0.1);
}
}
/* Force dark theme when .dark class is present */
.dark {
--bg-primary: #1a1a1a !important;
--bg-secondary: #2d2d2d !important;
--bg-tertiary: #404040 !important;
--bg-card: #2d2d2d !important;
--text-primary: #ffffff !important;
--text-secondary: #a1a1aa !important;
--text-muted: #71717a !important;
--border-light: #404040 !important;
--border-medium: #525252 !important;
--border-strong: #737373 !important;
--success-bg: rgba(14, 165, 233, 0.1) !important;
--error-bg: rgba(220, 38, 38, 0.1) !important;
--warning-bg: rgba(217, 119, 6, 0.1) !important;
}
/* Base styles */
body, html {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif;
background-color: var(--bg-secondary) !important;
color: var(--text-primary) !important;
line-height: 1.6;
}
.gradio-container {
background-color: var(--bg-secondary) !important;
color: var(--text-primary) !important;
max-width: 1200px !important;
margin: 0 auto !important;
padding: 1rem !important;
}
/* Header styles */
.app-header {
text-align: center;
padding: 2rem 1rem;
background: linear-gradient(135deg, var(--bg-card) 0%, var(--bg-tertiary) 100%);
border: 1px solid var(--border-light);
border-radius: 16px;
margin-bottom: 2rem;
box-shadow: var(--shadow-md);
}
.app-header-icon {
font-size: 3rem;
margin-bottom: 1rem;
display: block;
}
.app-header-title {
font-family: 'Poppins', sans-serif;
font-size: 2.5rem;
font-weight: 700;
color: var(--primary-color) !important;
margin: 0 0 0.5rem 0;
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
letter-spacing: -0.02em;
}
.app-header-tagline {
font-size: 1.1rem;
color: var(--text-secondary);
margin: 0;
font-weight: 400;
}
/* Card styles */
.dashboard-card {
background-color: var(--bg-card);
border: 1px solid var(--border-light);
border-radius: 12px;
margin-bottom: 1.5rem;
box-shadow: var(--shadow-sm);
overflow: hidden;
transition: all 0.2s ease;
}
.dashboard-card:hover {
box-shadow: var(--shadow-md);
transform: translateY(-1px);
}
.card-header {
background: linear-gradient(135deg, var(--primary-color), var(--primary-hover));
color: white;
padding: 1rem 1.5rem;
border-bottom: none;
}
.card-title {
font-family: 'Poppins', sans-serif;
font-size: 1.25rem;
font-weight: 600;
margin: 0;
text-align: center;
}
.card-content {
padding: 1.5rem;
background-color: var(--bg-card);
}
/* Input styles */
.input-group {
margin-bottom: 1.5rem;
}
.input-group:last-child {
margin-bottom: 0;
}
.gradio-textbox, .gradio-radio {
margin-bottom: 1rem;
}
.gradio-textbox label, .gradio-radio legend {
font-weight: 600;
color: var(--text-primary) !important;
margin-bottom: 0.5rem;
display: block;
}
.gradio-textbox textarea, .gradio-textbox input {
background-color: var(--bg-primary) !important;
border: 2px solid var(--border-medium) !important;
border-radius: 8px !important;
color: var(--text-primary) !important;
font-size: 0.95rem !important;
padding: 0.75rem !important;
transition: all 0.2s ease !important;
box-shadow: var(--shadow-sm) !important;
}
.gradio-textbox textarea:focus, .gradio-textbox input:focus {
border-color: var(--primary-color) !important;
box-shadow: 0 0 0 3px var(--primary-light) !important;
outline: none !important;
}
/* Radio button styles */
.gradio-radio .wrap {
display: grid !important;
grid-template-columns: repeat(auto-fit, minmax(120px, 1fr)) !important;
gap: 0.5rem !important;
margin-top: 0.5rem !important;
}
.gradio-radio label {
background-color: var(--bg-primary) !important;
border: 2px solid var(--border-medium) !important;
border-radius: 8px !important;
padding: 0.75rem 1rem !important;
cursor: pointer !important;
transition: all 0.2s ease !important;
text-align: center !important;
font-weight: 500 !important;
color: var(--text-primary) !important;
box-shadow: var(--shadow-sm) !important;
}
.gradio-radio label:hover {
border-color: var(--primary-color) !important;
background-color: var(--primary-light) !important;
transform: translateY(-1px) !important;
box-shadow: var(--shadow-md) !important;
}
.gradio-radio input[type="radio"]:checked + label {
background-color: var(--primary-color) !important;
border-color: var(--primary-hover) !important;
color: white !important;
box-shadow: var(--shadow-md) !important;
}
/* Button styles */
.button-row {
display: flex;
gap: 1rem;
margin-top: 1.5rem;
justify-content: center;
}
.gradio-button {
padding: 0.75rem 2rem !important;
border-radius: 8px !important;
font-weight: 600 !important;
font-size: 0.95rem !important;
transition: all 0.2s ease !important;
border: 2px solid transparent !important;
cursor: pointer !important;
min-width: 120px !important;
}
.gradio-button.primary {
background: linear-gradient(135deg, var(--primary-color), var(--primary-hover)) !important;
color: white !important;
box-shadow: var(--shadow-md) !important;
}
.gradio-button.primary:hover {
transform: translateY(-2px) !important;
box-shadow: var(--shadow-lg) !important;
}
.gradio-button.secondary {
background-color: transparent !important;
color: var(--text-primary) !important;
border-color: var(--border-medium) !important;
}
.gradio-button.secondary:hover {
background-color: var(--bg-tertiary) !important;
border-color: var(--primary-color) !important;
transform: translateY(-1px) !important;
}
/* Output styles */
.output-container {
min-height: 200px;
background-color: var(--bg-primary);
border: 2px solid var(--border-light);
border-radius: 8px;
padding: 1.5rem;
box-shadow: var(--shadow-sm);
}
.placeholder {
text-align: center;
color: var(--text-muted);
font-style: italic;
padding: 2rem;
border: 2px dashed var(--border-medium);
border-radius: 8px;
background-color: var(--bg-tertiary);
}
.animated-output-content {
animation: fadeInUp 0.3s ease-out;
}
@keyframes fadeInUp {
from {
opacity: 0;
transform: translateY(10px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
.response-header {
display: flex;
align-items: center;
gap: 0.5rem;
font-weight: 600;
color: var(--primary-color);
margin-bottom: 1rem;
font-size: 1.1rem;
}
.response-divider {
height: 2px;
background: linear-gradient(90deg, var(--primary-color), transparent);
margin: 1rem 0;
border-radius: 1px;
}
.response-content {
color: var(--text-primary);
line-height: 1.7;
}
/* Custom CSS for lists and paragraphs within response-content for better spacing */
.response-content p {
margin-bottom: 1em; /* Spacing between paragraphs */
}
.response-content ul, .response-content ol {
margin-bottom: 1em; /* Spacing after lists */
padding-left: 2em; /* Indent lists */
}
.response-content li {
margin-bottom: 0.5em; /* Spacing between list items */
}
.response-content li:last-child {
margin-bottom: 0;
}
/* Error message styles */
.error-message {
background-color: var(--error-bg);
border: 2px solid var(--error-border);
border-radius: 8px;
padding: 1rem;
color: var(--error-text);
display: flex;
align-items: center;
gap: 0.5rem;
font-weight: 500;
}
.error-icon {
font-size: 1.2rem;
}
.error-message a {
color: var(--error-text);
text-decoration: underline;
font-weight: 600;
}
/* Examples section */
.examples-section {
margin-top: 1rem;
}
.examples-section .gradio-examples {
border: 1px solid var(--border-light);
border-radius: 8px;
overflow: hidden;
box-shadow: var(--shadow-sm);
}
.examples-section table {
width: 100%;
border-collapse: collapse;
background-color: var(--bg-card);
}
.examples-section th {
background-color: var(--bg-tertiary);
color: var(--text-primary);
font-weight: 600;
padding: 1rem;
text-align: left;
border-bottom: 2px solid var(--border-medium);
}
.examples-section td {
padding: 1rem;
border-bottom: 1px solid var(--border-light);
color: var(--text-primary);
cursor: pointer;
transition: all 0.2s ease;
}
.examples-section tr:hover td {
background-color: var(--primary-light);
transform: translateX(4px);
}
/* Footer styles */
.app-footer {
margin-top: 3rem;
padding: 2rem;
background: linear-gradient(135deg, var(--bg-card) 0%, var(--bg-tertiary) 100%);
border: 1px solid var(--border-light);
border-radius: 12px;
text-align: center;
box-shadow: var(--shadow-sm);
}
.app-footer p {
margin: 0.5rem 0;
color: var(--text-secondary);
line-height: 1.6;
}
.app-footer strong {
color: var(--primary-color);
}
.app-footer a {
color: var(--primary-color);
text-decoration: none;
font-weight: 600;
transition: all 0.2s ease;
}
.app-footer a:hover {
text-decoration: underline;
color: var(--primary-hover);
}
/* Responsive design */
@media (max-width: 768px) {
.gradio-container {
padding: 0.5rem !important;
}
.app-header {
padding: 1.5rem 1rem;
}
.app-header-title {
font-size: 2rem;
}
.card-content {
padding: 1rem;
}
.button-row {
flex-direction: column;
}
.gradio-button {
width: 100% !important;
}
.gradio-radio .wrap {
grid-template-columns: 1fr !important;
}
}
@media (max-width: 480px) {
.app-header-title {
font-size: 1.8rem;
}
.app-header-tagline {
font-size: 1rem;
}
.card-header {
padding: 0.75rem 1rem;
}
.card-title {
font-size: 1.1rem;
}
}
/* Accessibility improvements */
.gradio-button:focus,
.gradio-textbox input:focus,
.gradio-textbox textarea:focus,
.gradio-radio label:focus {
outline: 2px solid var(--primary-color);
outline-offset: 2px;
}
/* Animation for loading states */
.loading {
opacity: 0.7;
pointer-events: none;
}
.loading::after {
content: '';
position: absolute;
top: 50%;
left: 50%;
width: 20px;
height: 20px;
margin: -10px 0 0 -10px;
border: 2px solid var(--primary-color);
border-radius: 50%;
border-top-color: transparent;
animation: spin 1s linear infinite;
}
@keyframes spin {
to {
transform: rotate(360deg);
}
}
"""
with gr.Blocks(css=custom_css, title="Landlord-Tenant Rights Assistant", theme="default") as demo:
# Header Section
with gr.Group(elem_classes="app-header"):
gr.HTML("""
<div class="app-header-icon">βοΈ</div>
<h1 class="app-header-title">Landlord-Tenant Rights Assistant</h1>
<p class="app-header-tagline">Empowering You with State-Specific Legal Insights</p>
""")
# How It Works Card
with gr.Group(elem_classes="dashboard-card"):
gr.HTML('<div class="card-header"><h3 class="card-title">How This Assistant Works</h3></div>')
with gr.Column(elem_classes="card-content"):
gr.Markdown("""
This AI-powered assistant helps navigate complex landlord-tenant laws. Simply ask a question about your state's regulations, and it will provide detailed, legally-grounded insights based on current legal statutes and precedents.
""")
# API Key Input Card
with gr.Group(elem_classes="dashboard-card"):
gr.HTML('<div class="card-header"><h3 class="card-title">π OpenAI API Key</h3></div>')
with gr.Column(elem_classes="card-content"):
api_key_input = gr.Textbox(
label="API Key",
type="password",
placeholder="Enter your OpenAI API key (e.g., sk-...)",
lines=1,
elem_classes=["input-group"]
)
gr.Markdown("""
**Required to process your query.** Get your API key from [OpenAI Platform](https://platform.openai.com/api-keys).
Your key is processed securely and not stored.
""")
# Query Input Card
with gr.Group(elem_classes="dashboard-card"):
gr.HTML('<div class="card-header"><h3 class="card-title">π¬ Ask Your Question</h3></div>')
with gr.Column(elem_classes="card-content"):
with gr.Row():
with gr.Column(scale=2):
query_input = gr.Textbox(
label="Your Question",
placeholder="E.g., What are the rules for security deposit returns in my state?",
lines=6,
max_lines=10,
elem_classes=["input-group"]
)
with gr.Column(scale=1):
state_input = gr.Radio(
label="Select State",
choices=radio_choices,
value=initial_value_radio,
elem_classes=["input-group"],
interactive=True
)
with gr.Row(elem_classes="button-row"):
clear_button = gr.Button("Clear", variant="secondary", elem_classes=["secondary"])
submit_button = gr.Button("Submit Query", variant="primary", elem_classes=["primary"])
# Output Card
with gr.Group(elem_classes="dashboard-card"):
gr.HTML('<div class="card-header"><h3 class="card-title">π Legal Assistant\'s Response</h3></div>')
with gr.Column(elem_classes="card-content"):
output = gr.HTML(
value='<div class="placeholder">π‘ The answer will appear here after submitting your query.</div>',
elem_classes=["output-container"]
)
# Examples Card
with gr.Group(elem_classes="dashboard-card examples-section"):
gr.HTML('<div class="card-header"><h3 class="card-title">π‘ Example Questions</h3></div>')
with gr.Column(elem_classes="card-content"):
if example_queries:
gr.Examples(
examples=example_queries,
inputs=[query_input, state_input],
examples_per_page=5,
label=""
)
else:
gr.HTML('<div class="placeholder">β οΈ Sample questions could not be loaded. Please ensure the vector database is populated.</div>')
# Footer
with gr.Group(elem_classes="app-footer"):
gr.HTML("""
<p><strong>β οΈ Disclaimer:</strong> This tool is for informational purposes only and does not constitute legal advice.
For specific legal guidance, always consult with a licensed attorney in your jurisdiction.</p>
<p>Developed by <strong>Nischal Subedi</strong>.
Connect on <a href="https://www.linkedin.com/in/nischal1/" target="_blank">LinkedIn</a> or
explore insights at <a href="https://datascientistinsights.substack.com/" target="_blank">Substack</a>.</p>
""")
# Event handlers
submit_button.click(
fn=query_interface_wrapper,
inputs=[api_key_input, query_input, state_input],
outputs=output,
api_name="submit_query"
)
clear_button.click(
fn=lambda: (
"",
"",
initial_value_radio,
'<div class="placeholder">β¨ Inputs cleared. Ready for your next question.</div>'
),
inputs=[],
outputs=[api_key_input, query_input, state_input, output]
)
return demo
# --- Main Execution Block (UNCHANGED from original logic) ---
if __name__ == "__main__":
logging.info("Starting Landlord-Tenant Rights Bot application...")
try:
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
DEFAULT_PDF_PATH = os.path.join(SCRIPT_DIR, "tenant-landlord.pdf")
DEFAULT_DB_PATH = os.path.join(SCRIPT_DIR, "chroma_db")
PDF_PATH = os.getenv("PDF_PATH", DEFAULT_PDF_PATH)
VECTOR_DB_PATH = os.getenv("VECTOR_DB_PATH", DEFAULT_DB_PATH)
# Ensure vector DB directory exists before initialization
os.makedirs(os.path.dirname(VECTOR_DB_PATH), exist_ok=True)
logging.info(f"Attempting to load PDF from: {PDF_PATH}")
if not os.path.exists(PDF_PATH):
logging.error(f"FATAL: PDF file not found at the specified path: {PDF_PATH}")
print(f"\n--- CONFIGURATION ERROR ---\nPDF file ('{os.path.basename(PDF_PATH)}') not found at: {PDF_PATH}.\nPlease ensure it exists or set 'PDF_PATH' environment variable.\n---------------------------\n")
exit(1) # Correctly exits if PDF is not found
if not os.access(PDF_PATH, os.R_OK):
logging.error(f"FATAL: PDF file at '{PDF_PATH}' exists but is not readable. Check file permissions.")
print(f"\n--- PERMISSION ERROR ---\nPDF file ('{os.path.basename(PDF_PATH)}') found but not readable at: {PDF_PATH}\nPlease check file permissions (e.g., using 'chmod +r' in terminal).\n---------------------------\n")
exit(1) # Correctly exits if PDF is unreadable
logging.info(f"PDF file '{os.path.basename(PDF_PATH)}' found and is readable.")
# Initialize VectorDatabase and RAGSystem
vector_db_instance = VectorDatabase(persist_directory=VECTOR_DB_PATH)
rag = RAGSystem(vector_db=vector_db_instance)
# Load PDF data into the vector DB (or verify it's already loaded)
rag.load_pdf(PDF_PATH)
# Get the Gradio interface object
app_interface = rag.gradio_interface()
SERVER_PORT = int(os.getenv("PORT", 7860)) # Use PORT env var for Hugging Face Spaces
logging.info(f"Launching Gradio app on http://0.0.0.0:{SERVER_PORT}")
print(f"\n--- Gradio App Running ---\nAccess at: http://localhost:{SERVER_PORT} or your public Spaces URL\n--------------------------\n")
app_interface.launch(server_name="0.0.0.0", server_port=SERVER_PORT, share=False) # share=False is typical for Spaces
except ModuleNotFoundError as e:
if "vector_db" in str(e):
logging.error(f"FATAL: Could not import VectorDatabase. Ensure 'vector_db.py' is in the same directory and 'chromadb', 'langchain', 'pypdf', 'sentence-transformers' are installed.", exc_info=True)
print(f"\n--- MISSING DEPENDENCY OR FILE ---\nCould not find/import 'vector_db.py' or one of its dependencies.\nError: {e}\nPlease ensure 'vector_db.py' is present and all required packages (chromadb, langchain, pypdf, sentence-transformers, etc.) are in your requirements.txt and installed.\n---------------------------\n")
else:
logging.error(f"Application startup failed due to a missing module: {str(e)}", exc_info=True)
print(f"\n--- FATAL STARTUP ERROR - MISSING MODULE ---\n{str(e)}\nPlease ensure all dependencies are installed.\nCheck logs for more details.\n---------------------------\n")
exit(1)
except FileNotFoundError as e:
logging.error(f"Application startup failed due to a missing file: {str(e)}", exc_info=True)
print(f"\n--- FATAL STARTUP ERROR - FILE NOT FOUND ---\n{str(e)}\nPlease ensure the file exists at the specified path.\nCheck logs for more details.\n---------------------------\n")
exit(1)
except Exception as e:
logging.error(f"Application startup failed: {str(e)}", exc_info=True)
print(f"\n--- FATAL STARTUP ERROR ---\n{str(e)}\nCheck logs for more details.\n---------------------------\n")
exit(1) |