|
import os |
|
import logging |
|
from typing import Dict, List, Optional |
|
from functools import lru_cache |
|
import re |
|
|
|
import gradio as gr |
|
|
|
try: |
|
|
|
from vector_db import VectorDatabase |
|
except ImportError: |
|
print("Error: Could not import VectorDatabase from vector_db.py.") |
|
print("Please ensure vector_db.py exists in the same directory and is correctly defined.") |
|
|
|
exit(1) |
|
|
|
try: |
|
from langchain_openai import ChatOpenAI |
|
except ImportError: |
|
print("Error: langchain-openai not found. Please install it: pip install langchain-openai") |
|
|
|
exit(1) |
|
|
|
from langchain.prompts import PromptTemplate |
|
from langchain.chains import LLMChain |
|
|
|
|
|
import warnings |
|
warnings.filterwarnings("ignore", category=SyntaxWarning) |
|
warnings.filterwarnings("ignore", category=UserWarning, message=".*You are using gradio version.*") |
|
warnings.filterwarnings("ignore", category=DeprecationWarning) |
|
|
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format='%(asctime)s - %(levelname)s - [%(filename)s:%(lineno)d] - %(message)s' |
|
) |
|
|
|
|
|
class RAGSystem: |
|
def __init__(self, vector_db: Optional[VectorDatabase] = None): |
|
logging.info("Initializing RAGSystem") |
|
self.vector_db = vector_db if vector_db else VectorDatabase() |
|
self.llm = None |
|
self.chain = None |
|
self.prompt_template_str = """You are a legal assistant specializing in tenant rights and landlord-tenant laws. Your goal is to provide accurate, detailed, and helpful answers grounded in legal authority. Use the provided statutes as the primary source when available. If no relevant statutes are found in the context, rely on your general knowledge to provide a pertinent and practical response, clearly indicating when you are doing so and prioritizing state-specific information over federal laws for state-specific queries. |
|
Instructions: |
|
* Use the context and statutes as the primary basis for your answer when available. |
|
* For state-specific queries, prioritize statutes or legal principles from the specified state over federal laws. |
|
* Cite relevant statutes (e.g., (AS § 34.03.220(a)(2))) explicitly in your answer when applicable. |
|
* If multiple statutes apply, list all relevant ones. |
|
* If no specific statute is found in the context, state this clearly (e.g., 'No specific statute was found in the provided context'), then provide a general answer based on common legal principles or practices, marked as such. |
|
* Include practical examples or scenarios to enhance clarity and usefulness. |
|
* Use bullet points or numbered lists for readability when appropriate. |
|
* Maintain a professional and neutral tone. |
|
Question: {query} |
|
State: {state} |
|
Statutes from context: |
|
{statutes} |
|
Context information: |
|
--- START CONTEXT --- |
|
{context} |
|
--- END CONCONTEXT --- |
|
Answer:""" |
|
self.prompt_template = PromptTemplate( |
|
input_variables=["query", "context", "state", "statutes"], |
|
template=self.prompt_template_str |
|
) |
|
logging.info("RAGSystem initialized.") |
|
|
|
def extract_statutes(self, text: str) -> str: |
|
statute_pattern = r'\b(?:[A-Z]{2,}\.?\s+(?:Rev\.\s+)?Stat\.?|Code(?:\s+Ann\.?)?|Ann\.?\s+Laws|Statutes|CCP|USC|ILCS|Civ\.\s+Code|Penal\s+Code|Gen\.\s+Oblig\.\s+Law|R\.?S\.?|P\.?L\.?)\s+§\s*[\d\-]+(?:\.\d+)?(?:[\(\w\.\)]+)?|Title\s+\d+\s+USC\s+§\s*\d+(?:-\d+)?\b' |
|
statutes = re.findall(statute_pattern, text, re.IGNORECASE) |
|
valid_statutes = [] |
|
for statute in statutes: |
|
statute = statute.strip() |
|
if '§' in statute and any(char.isdigit() for char in statute): |
|
if not re.match(r'^\([\w\.]+\)$', statute) and 'http' not in statute: |
|
if len(statute) > 5: |
|
valid_statutes.append(statute) |
|
|
|
if valid_statutes: |
|
seen = set() |
|
unique_statutes = [s for s in valid_statutes if not (s.rstrip('.,;') in seen or seen.add(s.rstrip('.,;')))] |
|
logging.info(f"Extracted {len(unique_statutes)} unique statutes.") |
|
return "\n".join(f"- {s}" for s in unique_statutes) |
|
|
|
logging.info("No statutes found matching the pattern in the context.") |
|
return "No specific statutes found in the provided context." |
|
|
|
@lru_cache(maxsize=50) |
|
def process_query_cached(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]: |
|
logging.info(f"Processing query (cache key: '{query}'|'{state}'|key_hidden) with n_results={n_results}") |
|
|
|
if not state or state == "Select a state..." or "Error" in state: |
|
logging.warning("No valid state provided for query.") |
|
return {"answer": "<div class='error-message'>Error: Please select a valid state.</div>", "context_used": "N/A - Invalid Input"} |
|
if not query or not query.strip(): |
|
logging.warning("No query provided.") |
|
return {"answer": "<div class='error-message'>Error: Please enter your question.</div>", "context_used": "N/A - Invalid Input"} |
|
if not openai_api_key or not openai_api_key.strip() or not openai_api_key.startswith("sk-"): |
|
logging.warning("No valid OpenAI API key provided.") |
|
return {"answer": "<div class='error-message'>Error: Please provide a valid OpenAI API key (starting with 'sk-'). Get one from <a href='https://platform.openai.com/api-keys' target='_blank'>OpenAI</a>.</div>", "context_used": "N/A - Invalid Input"} |
|
|
|
try: |
|
logging.info("Initializing temporary LLM and Chain for this query...") |
|
temp_llm = ChatOpenAI( |
|
temperature=0.2, openai_api_key=openai_api_key, model_name="gpt-3.5-turbo", |
|
max_tokens=1500, request_timeout=45 |
|
) |
|
temp_chain = LLMChain(llm=temp_llm, prompt=self.prompt_template) |
|
logging.info("Temporary LLM and Chain initialized successfully.") |
|
except Exception as e: |
|
logging.error(f"LLM Initialization failed: {str(e)}", exc_info=True) |
|
error_msg = "Error: Failed to initialize AI model. Please check your network connection and API key validity." |
|
if "authentication" in str(e).lower(): |
|
error_msg = "Error: OpenAI API Key is invalid or expired. Please check your key." |
|
return {"answer": f"<div class='error-message'>{error_msg}</div><div class='error-details'>Details: {str(e)}</div>", "context_used": "N/A - LLM Init Failed"} |
|
|
|
context = "No relevant context found." |
|
statutes_from_context = "Statute retrieval skipped due to context issues." |
|
try: |
|
logging.info(f"Querying Vector DB for query: '{query[:50]}...' in state '{state}'...") |
|
results = self.vector_db.query(query, state=state, n_results=n_results) |
|
logging.info(f"Vector DB query successful for state '{state}'. Processing results...") |
|
|
|
context_parts = [] |
|
doc_results = results.get("document_results", {}) |
|
docs = doc_results.get("documents", [[]])[0] |
|
metadatas = doc_results.get("metadatas", [[]])[0] |
|
if docs and metadatas and len(docs) == len(metadatas): |
|
logging.info(f"Found {len(docs)} document chunks.") |
|
for i, doc_content in enumerate(docs): |
|
metadata = metadatas[i] |
|
state_label = metadata.get('state', 'Unknown State') |
|
chunk_id = metadata.get('chunk_id', 'N/A') |
|
context_parts.append(f"**Source: Document Chunk {chunk_id} (State: {state_label})**\n{doc_content}") |
|
|
|
state_results_data = results.get("state_results", {}) |
|
state_docs = state_results_data.get("documents", [[]])[0] |
|
state_metadatas = state_results_data.get("metadatas", [[]])[0] |
|
if state_docs and state_metadatas and len(state_docs) == len(state_metadatas): |
|
logging.info(f"Found {len(state_docs)} state summary documents.") |
|
for i, state_doc_content in enumerate(state_docs): |
|
metadata = state_metadatas[i] |
|
state_label = metadata.get('state', state) |
|
context_parts.append(f"**Source: State Summary (State: {state_label})**\n{state_doc_content}") |
|
|
|
if context_parts: |
|
context = "\n\n---\n\n".join(context_parts) |
|
logging.info(f"Constructed context with {len(context_parts)} parts. Length: {len(context)} chars.") |
|
try: |
|
statutes_from_context = self.extract_statutes(context) |
|
except Exception as e: |
|
logging.error(f"Error extracting statutes: {e}", exc_info=True) |
|
statutes_from_context = "Error extracting statutes from context." |
|
else: |
|
logging.warning("No relevant context parts found from vector DB query.") |
|
context = "No relevant context could be retrieved from the knowledge base for this query and state. The AI will answer from its general knowledge." |
|
statutes_from_context = "No specific statutes found as no context was retrieved." |
|
|
|
except Exception as e: |
|
logging.error(f"Vector DB query/context processing failed: {str(e)}", exc_info=True) |
|
context = f"Warning: Error retrieving documents from the knowledge base ({str(e)}). The AI will attempt to answer from its general knowledge, which may be less specific or accurate." |
|
statutes_from_context = "Statute retrieval skipped due to error retrieving context." |
|
|
|
try: |
|
logging.info("Invoking LLMChain with constructed input...") |
|
llm_input = {"query": query, "context": context, "state": state, "statutes": statutes_from_context} |
|
answer_dict = temp_chain.invoke(llm_input) |
|
answer_text = answer_dict.get('text', '').strip() |
|
|
|
if not answer_text: |
|
logging.warning("LLM returned an empty answer.") |
|
answer_text = "<div class='error-message'><span class='error-icon'>⚠️</span>The AI model returned an empty response. This might be due to the query, context limitations, or temporary issues. Please try rephrasing your question or try again later.</div>" |
|
else: |
|
logging.info("LLM generated answer successfully.") |
|
|
|
return {"answer": answer_text, "context_used": context} |
|
|
|
except Exception as e: |
|
logging.error(f"LLM processing failed: {str(e)}", exc_info=True) |
|
error_message = "Error: AI answer generation failed." |
|
details = f"Details: {str(e)}" |
|
if "authentication" in str(e).lower(): |
|
error_message = "Error: Authentication failed. Please double-check your OpenAI API key." |
|
details = "" |
|
elif "rate limit" in str(e).lower(): |
|
error_message = "Error: You've exceeded your OpenAI API rate limit or quota. Please check your usage and plan limits, or wait and try again." |
|
details = "" |
|
elif "context length" in str(e).lower(): |
|
error_message = "Error: The request was too long for the AI model. This can happen with very complex questions or extensive retrieved context." |
|
details = "Try simplifying your question or asking about a more specific aspect." |
|
elif "timeout" in str(e).lower(): |
|
error_message = "Error: The request to the AI model timed out. The service might be busy." |
|
details = "Please try again in a few moments." |
|
|
|
formatted_error = f"<div class='error-message'><span class='error-icon'>❌</span>{error_message}</div>" |
|
if details: |
|
formatted_error += f"<div class='error-details'>{details}</div>" |
|
|
|
return {"answer": formatted_error, "context_used": context} |
|
|
|
def process_query(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]: |
|
return self.process_query_cached(query.strip(), state, openai_api_key.strip(), n_results) |
|
|
|
def get_states(self) -> List[str]: |
|
try: |
|
states = self.vector_db.get_states() |
|
if not states: |
|
logging.warning("No states retrieved from vector_db. Returning empty list.") |
|
return [] |
|
valid_states = sorted(list(set(s for s in states if s and isinstance(s, str) and s != "Select a state..."))) |
|
logging.info(f"Retrieved {len(valid_states)} unique, valid states from VectorDatabase.") |
|
return valid_states |
|
except Exception as e: |
|
logging.error(f"Failed to get states from VectorDatabase: {str(e)}", exc_info=True) |
|
return ["Error: Could not load states"] |
|
|
|
def load_pdf(self, pdf_path: str) -> int: |
|
if not os.path.exists(pdf_path): |
|
logging.error(f"PDF file not found at path: {pdf_path}") |
|
raise FileNotFoundError(f"PDF file not found: {pdf_path}") |
|
try: |
|
logging.info(f"Attempting to load/verify data from PDF: {pdf_path}") |
|
|
|
num_states_processed = self.vector_db.process_and_load_pdf(pdf_path) |
|
doc_count = self.vector_db.document_collection.count() |
|
state_count = self.vector_db.state_collection.count() |
|
total_items = doc_count + state_count |
|
|
|
if total_items > 0: |
|
logging.info(f"Vector DB contains {total_items} items ({doc_count} docs, {state_count} states). PDF processed or data already existed.") |
|
current_states = self.get_states() |
|
return len(current_states) if current_states and "Error" not in current_states[0] else 0 |
|
else: |
|
logging.warning(f"PDF processing completed, but the vector database appears empty. Check PDF content and processing logs.") |
|
return 0 |
|
|
|
except Exception as e: |
|
logging.error(f"Failed to load or process PDF '{pdf_path}': {str(e)}", exc_info=True) |
|
raise RuntimeError(f"Failed to process PDF '{pdf_path}': {e}") from e |
|
|
|
|
|
def gradio_interface(self): |
|
def query_interface_wrapper(api_key: str, query: str, state: str) -> str: |
|
|
|
if not api_key or not api_key.strip() or not api_key.startswith("sk-"): |
|
return "<div class='error-message'><span class='error-icon'>⚠️</span>Please provide a valid OpenAI API key (starting with 'sk-'). <a href='https://platform.openai.com/api-keys' target='_blank'>OpenAI</a>.</div>" |
|
if not state or state == "Select a state..." or "Error" in state: |
|
return "<div class='error-message'><span class='error-icon'>⚠️</span>Please select a valid state from the list.</div>" |
|
if not query or not query.strip(): |
|
return "<div class='error-message'><span class='error-icon'>⚠️</span>Please enter your question in the text box.</div>" |
|
|
|
|
|
result = self.process_query(query=query, state=state, openai_api_key=api_key) |
|
answer = result.get("answer", "<div class='error-message'><span class='error-icon'>⚠️</span>An unexpected error occurred.</div>") |
|
|
|
|
|
if "<div class='error-message'>" in answer: |
|
|
|
return answer |
|
else: |
|
|
|
formatted_response_content = f"<div class='response-header'><span class='response-icon'>📋</span>Legal Analysis for {state}</div><hr class='divider'>{answer}" |
|
return f"<div class='animated-output-content'>{formatted_response_content}</div>" |
|
|
|
try: |
|
available_states_list = self.get_states() |
|
|
|
print(f"DEBUG: States loaded for selection: {available_states_list}") |
|
|
|
|
|
radio_choices = ["Select a state..."] + (available_states_list if available_states_list and "Error" not in available_states_list[0] else ["Error: States unavailable"]) |
|
initial_value_radio = radio_choices[0] |
|
except Exception as e: |
|
print(f"DEBUG: Error loading states for selection: {e}") |
|
radio_choices = ["Error: Critical failure loading states"] |
|
initial_value_radio = radio_choices[0] |
|
|
|
|
|
example_queries_base = [ |
|
["What are the rules for security deposit returns?", "California"], |
|
["Can a landlord enter my apartment without notice?", "New York"], |
|
["My landlord hasn't made necessary repairs. What can I do?", "Texas"], |
|
["How much notice must a landlord give to raise rent?", "Florida"], |
|
["What is an implied warranty of habitability?", "Illinois"] |
|
] |
|
example_queries = [] |
|
if available_states_list and "Error" not in available_states_list[0] and len(available_states_list) > 0: |
|
loaded_states_set = set(available_states_list) |
|
|
|
example_queries = [ex for ex in example_queries_base if ex[1] in loaded_states_set] |
|
|
|
if not example_queries: |
|
|
|
example_queries.append(["What basic rights do tenants have?", available_states_list[0] if available_states_list else "California"]) |
|
else: |
|
example_queries.append(["What basic rights do tenants have?", "California"]) |
|
|
|
|
|
custom_css = """ |
|
/* Import professional fonts */ |
|
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&family=Playfair+Display:wght@600;700&display=swap'); |
|
|
|
/* Professional color palette with refined oranges and neutrals */ |
|
:root { |
|
--primary-color: #D97706; /* Refined amber-orange */ |
|
--primary-hover: #B45309; /* Deeper amber for hover */ |
|
--primary-light: #FEF3C7; /* Very light amber for backgrounds */ |
|
--secondary-color: #6B7280; /* Professional gray */ |
|
--accent-color: #0F172A; /* Deep slate for text */ |
|
|
|
--background-primary: #FFFFFF; /* Pure white for cards */ |
|
--background-secondary: #F8FAFC; /* Very light gray for page background */ |
|
--background-tertiary: #F1F5F9; /* Slightly darker for subtle contrast */ |
|
|
|
--text-primary: #0F172A; /* Deep slate for primary text */ |
|
--text-secondary: #475569; /* Medium slate for secondary text */ |
|
--text-muted: #64748B; /* Lighter slate for muted text */ |
|
|
|
--border-color: #E2E8F0; /* Light gray for borders */ |
|
--border-focus: #D97706; /* Primary color for focus states */ |
|
--border-subtle: #F1F5F9; /* Very subtle border */ |
|
|
|
--shadow-xs: 0 1px 2px 0 rgba(0,0,0,0.05); |
|
--shadow-sm: 0 1px 3px 0 rgba(0,0,0,0.1), 0 1px 2px -1px rgba(0,0,0,0.1); |
|
--shadow-md: 0 4px 6px -1px rgba(0,0,0,0.1), 0 2px 4px -2px rgba(0,0,0,0.1); |
|
--shadow-lg: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -4px rgba(0,0,0,0.1); |
|
--shadow-xl: 0 20px 25px -5px rgba(0,0,0,0.1), 0 8px 10px -6px rgba(0,0,0,0.1); |
|
|
|
--error-bg: #FEF2F2; /* Light red background */ |
|
--error-border: #FECACA; /* Light red border */ |
|
--error-text: #DC2626; /* Strong red text */ |
|
|
|
--success-bg: #F0FDF4; /* Light green background */ |
|
--success-border: #BBF7D0; /* Light green border */ |
|
--success-text: #16A34A; /* Strong green text */ |
|
} |
|
|
|
/* Base styling */ |
|
body, html { |
|
background-color: var(--background-secondary) !important; |
|
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important; |
|
} |
|
|
|
/* Main container with professional spacing */ |
|
.gradio-container { |
|
max-width: 1000px !important; |
|
margin: 0 auto !important; |
|
padding: 2rem !important; |
|
background-color: var(--background-secondary) !important; |
|
} |
|
|
|
/* Professional header with subtle elegance */ |
|
.app-header-wrapper { |
|
background: linear-gradient(135deg, var(--background-primary) 0%, var(--primary-light) 100%) !important; |
|
border: 1px solid var(--border-color) !important; |
|
border-radius: 16px !important; |
|
padding: 3rem 2rem !important; |
|
margin-bottom: 2rem !important; |
|
box-shadow: var(--shadow-sm) !important; |
|
position: relative !important; |
|
text-align: center !important; |
|
overflow: hidden !important; |
|
} |
|
|
|
.app-header-wrapper::before { |
|
content: ''; |
|
position: absolute; |
|
top: 0; |
|
left: 0; |
|
width: 100%; |
|
height: 100%; |
|
background: radial-gradient(circle at 30% 20%, rgba(217, 119, 6, 0.03) 0%, transparent 50%), |
|
radial-gradient(circle at 70% 80%, rgba(217, 119, 6, 0.03) 0%, transparent 50%); |
|
z-index: 0; |
|
pointer-events: none; |
|
} |
|
|
|
.app-header-logo { |
|
font-size: 3.5rem !important; |
|
margin-bottom: 1rem !important; |
|
display: block !important; |
|
color: var(--primary-color) !important; |
|
position: relative; |
|
z-index: 1; |
|
filter: drop-shadow(0 2px 4px rgba(217, 119, 6, 0.1)); |
|
} |
|
|
|
.app-header-title { |
|
font-family: 'Playfair Display', serif !important; |
|
font-size: 2.75rem !important; |
|
font-weight: 700 !important; |
|
color: var(--text-primary) !important; |
|
margin: 0 0 1rem 0 !important; |
|
line-height: 1.2 !important; |
|
letter-spacing: -0.02em !important; |
|
position: relative; |
|
z-index: 1; |
|
} |
|
|
|
.app-header-tagline { |
|
font-size: 1.125rem !important; |
|
color: var(--text-secondary) !important; |
|
font-weight: 400 !important; |
|
margin: 0 !important; |
|
max-width: 600px; |
|
margin: 0 auto !important; |
|
position: relative; |
|
z-index: 1; |
|
} |
|
|
|
/* Professional card sections */ |
|
.main-dashboard-container { |
|
display: flex !important; |
|
flex-direction: column !important; |
|
gap: 1.5rem !important; |
|
} |
|
|
|
.dashboard-card-section { |
|
background-color: var(--background-primary) !important; |
|
border: 1px solid var(--border-color) !important; |
|
border-radius: 12px !important; |
|
padding: 2rem !important; |
|
box-shadow: var(--shadow-sm) !important; |
|
transition: all 0.2s ease !important; |
|
} |
|
|
|
.dashboard-card-section:hover { |
|
box-shadow: var(--shadow-md) !important; |
|
transform: translateY(-1px) !important; |
|
} |
|
|
|
/* Professional typography for section titles */ |
|
.section-title { |
|
font-family: 'Playfair Display', serif !important; |
|
font-size: 1.5rem !important; |
|
font-weight: 700 !important; |
|
color: var(--text-primary) !important; |
|
margin: 0 0 1.5rem 0 !important; |
|
padding-bottom: 0.75rem !important; |
|
border-bottom: 2px solid var(--primary-light) !important; |
|
text-align: center !important; |
|
position: relative !important; |
|
} |
|
|
|
.section-title::after { |
|
content: ''; |
|
position: absolute; |
|
bottom: -2px; |
|
left: 50%; |
|
transform: translateX(-50%); |
|
width: 60px; |
|
height: 2px; |
|
background-color: var(--primary-color); |
|
border-radius: 1px; |
|
} |
|
|
|
/* Professional input styling */ |
|
.gradio-textbox textarea, |
|
.gradio-textbox input { |
|
background-color: var(--background-primary) !important; |
|
border: 1px solid var(--border-color) !important; |
|
border-radius: 8px !important; |
|
padding: 0.875rem 1rem !important; |
|
font-size: 0.95rem !important; |
|
font-family: 'Inter', sans-serif !important; |
|
color: var(--text-primary) !important; |
|
transition: all 0.2s ease !important; |
|
box-shadow: var(--shadow-xs) !important; |
|
} |
|
|
|
.gradio-textbox textarea:focus, |
|
.gradio-textbox input:focus { |
|
outline: none !important; |
|
border-color: var(--border-focus) !important; |
|
box-shadow: 0 0 0 3px rgba(217, 119, 6, 0.1) !important; |
|
} |
|
|
|
/* Professional radio button styling */ |
|
.gradio-radio { |
|
padding: 0 !important; |
|
margin-top: 0.5rem !important; |
|
} |
|
|
|
.gradio-radio .gr-radio-input { |
|
display: none !important; |
|
} |
|
|
|
.gradio-radio label { |
|
display: flex !important; |
|
justify-content: center !important; |
|
align-items: center !important; |
|
padding: 0.75rem 1rem !important; |
|
border: 1px solid var(--border-color) !important; |
|
border-radius: 8px !important; |
|
background-color: var(--background-primary) !important; |
|
color: var(--text-primary) !important; |
|
font-weight: 500 !important; |
|
cursor: pointer !important; |
|
transition: all 0.2s ease !important; |
|
box-shadow: var(--shadow-xs) !important; |
|
margin: 0.25rem 0 !important; |
|
width: 100% !important; |
|
box-sizing: border-box !important; |
|
} |
|
|
|
.gradio-radio label:hover { |
|
background-color: var(--background-tertiary) !important; |
|
border-color: var(--primary-color) !important; |
|
box-shadow: var(--shadow-sm) !important; |
|
transform: translateY(-1px) !important; |
|
} |
|
|
|
.gradio-radio label.selected { |
|
background-color: var(--primary-color) !important; |
|
color: white !important; |
|
border-color: var(--primary-hover) !important; |
|
box-shadow: var(--shadow-md) !important; |
|
} |
|
|
|
.gradio-radio label.selected span { |
|
color: white !important; |
|
} |
|
|
|
/* Professional label styling */ |
|
.gradio-textbox label, |
|
.gradio-radio .gr-form-label { |
|
font-weight: 600 !important; |
|
color: var(--text-primary) !important; |
|
font-size: 0.95rem !important; |
|
margin-bottom: 0.5rem !important; |
|
display: block !important; |
|
} |
|
|
|
/* Professional button styling */ |
|
.button-row { |
|
display: flex !important; |
|
gap: 0.75rem !important; |
|
justify-content: flex-end !important; |
|
margin-top: 1.5rem !important; |
|
} |
|
|
|
.gradio-button { |
|
padding: 0.75rem 2rem !important; |
|
border-radius: 8px !important; |
|
font-weight: 600 !important; |
|
font-size: 0.95rem !important; |
|
transition: all 0.2s ease !important; |
|
cursor: pointer !important; |
|
border: 1px solid transparent !important; |
|
text-align: center !important; |
|
} |
|
|
|
.gr-button-primary { |
|
background-color: var(--primary-color) !important; |
|
color: white !important; |
|
box-shadow: var(--shadow-sm) !important; |
|
} |
|
|
|
.gr-button-primary:hover { |
|
background-color: var(--primary-hover) !important; |
|
box-shadow: var(--shadow-md) !important; |
|
transform: translateY(-1px) !important; |
|
} |
|
|
|
.gr-button-secondary { |
|
background-color: transparent !important; |
|
color: var(--text-secondary) !important; |
|
border-color: var(--border-color) !important; |
|
} |
|
|
|
.gr-button-secondary:hover { |
|
background-color: var(--background-tertiary) !important; |
|
border-color: var(--primary-color) !important; |
|
color: var(--text-primary) !important; |
|
transform: translateY(-1px) !important; |
|
} |
|
|
|
/* Professional output styling */ |
|
.output-content-wrapper { |
|
background-color: var(--background-primary) !important; |
|
border: 1px solid var(--border-color) !important; |
|
border-radius: 8px !important; |
|
padding: 1.5rem !important; |
|
min-height: 120px !important; |
|
color: var(--text-primary) !important; |
|
display: flex; |
|
flex-direction: column; |
|
justify-content: center; |
|
align-items: center; |
|
} |
|
|
|
.animated-output-content { |
|
opacity: 0; |
|
animation: fadeInUp 0.5s ease-out forwards; |
|
width: 100%; |
|
white-space: pre-wrap; |
|
overflow-wrap: break-word; |
|
word-break: break-word; |
|
text-align: left !important; |
|
} |
|
|
|
@keyframes fadeInUp { |
|
from { |
|
opacity: 0; |
|
transform: translateY(10px); |
|
} |
|
to { |
|
opacity: 1; |
|
transform: translateY(0); |
|
} |
|
} |
|
|
|
.response-header { |
|
font-size: 1.25rem !important; |
|
font-weight: 700 !important; |
|
color: var(--primary-color) !important; |
|
margin-bottom: 1rem !important; |
|
display: flex !important; |
|
align-items: center !important; |
|
gap: 0.5rem !important; |
|
text-align: left !important; |
|
width: 100%; |
|
justify-content: flex-start; |
|
} |
|
|
|
.response-icon { |
|
font-size: 1.25rem !important; |
|
color: var(--primary-color) !important; |
|
} |
|
|
|
.divider { |
|
border: none !important; |
|
border-top: 1px solid var(--border-color) !important; |
|
margin: 1rem 0 !important; |
|
} |
|
|
|
/* Professional error styling */ |
|
.error-message { |
|
background-color: var(--error-bg) !important; |
|
border: 1px solid var(--error-border) !important; |
|
color: var(--error-text) !important; |
|
padding: 1rem !important; |
|
border-radius: 8px !important; |
|
display: flex !important; |
|
align-items: flex-start !important; |
|
gap: 0.75rem !important; |
|
font-size: 0.95rem !important; |
|
font-weight: 500 !important; |
|
line-height: 1.5 !important; |
|
text-align: left !important; |
|
width: 100%; |
|
box-sizing: border-box; |
|
} |
|
|
|
.error-message a { |
|
color: var(--error-text) !important; |
|
text-decoration: underline !important; |
|
} |
|
|
|
.error-icon { |
|
font-size: 1.25rem !important; |
|
line-height: 1 !important; |
|
margin-top: 0.1rem !important; |
|
} |
|
|
|
/* Professional placeholder styling */ |
|
.placeholder { |
|
background-color: var(--background-tertiary) !important; |
|
border: 1px dashed var(--border-color) !important; |
|
border-radius: 8px !important; |
|
padding: 2rem 1.5rem !important; |
|
text-align: center !important; |
|
color: var(--text-muted) !important; |
|
font-style: italic !important; |
|
font-size: 1rem !important; |
|
width: 100%; |
|
box-sizing: border-box; |
|
} |
|
|
|
/* Professional examples table */ |
|
.examples-section .gr-samples-table { |
|
border: 1px solid var(--border-color) !important; |
|
border-radius: 8px !important; |
|
overflow: hidden !important; |
|
margin-top: 1rem !important; |
|
box-shadow: var(--shadow-xs) !important; |
|
} |
|
|
|
.examples-section .gr-samples-table th, |
|
.examples-section .gr-samples-table td { |
|
padding: 0.875rem !important; |
|
border: none !important; |
|
font-size: 0.95rem !important; |
|
text-align: left !important; |
|
} |
|
|
|
.examples-section .gr-samples-table th { |
|
background-color: var(--background-tertiary) !important; |
|
font-weight: 600 !important; |
|
color: var(--text-primary) !important; |
|
} |
|
|
|
.examples-section .gr-samples-table td { |
|
background-color: var(--background-primary) !important; |
|
color: var(--text-primary) !important; |
|
border-top: 1px solid var(--border-subtle) !important; |
|
cursor: pointer !important; |
|
transition: background-color 0.2s ease !important; |
|
} |
|
|
|
.examples-section .gr-samples-table tr:hover td { |
|
background-color: var(--background-tertiary) !important; |
|
} |
|
|
|
/* Professional footer */ |
|
.app-footer-wrapper { |
|
background-color: var(--background-primary) !important; |
|
border: 1px solid var(--border-color) !important; |
|
border-radius: 12px !important; |
|
padding: 1.5rem !important; |
|
margin-top: 2rem !important; |
|
text-align: center !important; |
|
box-shadow: var(--shadow-xs) !important; |
|
} |
|
|
|
.app-footer-wrapper p { |
|
margin: 0.5rem 0 !important; |
|
font-size: 0.9rem !important; |
|
color: var(--text-secondary) !important; |
|
line-height: 1.6 !important; |
|
} |
|
|
|
.app-footer-wrapper a { |
|
color: var(--primary-color) !important; |
|
text-decoration: none !important; |
|
font-weight: 600 !important; |
|
} |
|
|
|
.app-footer-wrapper a:hover { |
|
text-decoration: underline !important; |
|
} |
|
|
|
/* Responsive design */ |
|
@media (max-width: 768px) { |
|
.gradio-container { |
|
padding: 1rem !important; |
|
} |
|
|
|
.app-header-title { |
|
font-size: 2rem !important; |
|
} |
|
|
|
.app-header-tagline { |
|
font-size: 1rem !important; |
|
} |
|
|
|
.dashboard-card-section { |
|
padding: 1.5rem !important; |
|
} |
|
|
|
.input-row { |
|
flex-direction: column !important; |
|
} |
|
|
|
.button-row { |
|
flex-direction: column !important; |
|
} |
|
|
|
.gradio-button { |
|
width: 100% !important; |
|
} |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=custom_css, title="Landlord-Tenant Rights Assistant") as demo: |
|
|
|
with gr.Group(elem_classes="app-header-wrapper"): |
|
gr.Markdown( |
|
""" |
|
<span class='app-header-logo'>⚖️</span> |
|
<h1 class='app-header-title'>Landlord-Tenant Rights Assistant</h1> |
|
<p class='app-header-tagline'>Professional Legal Research & Analysis Platform</p> |
|
""", |
|
elem_classes="full-width-center" |
|
) |
|
|
|
|
|
with gr.Column(elem_classes="main-dashboard-container"): |
|
|
|
|
|
with gr.Group(elem_classes="dashboard-card-section"): |
|
gr.Markdown("<h3 class='section-title'>Welcome & Legal Disclaimer</h3>") |
|
gr.Markdown( |
|
""" |
|
This professional legal research platform provides comprehensive, state-specific analysis of landlord-tenant laws. Our system delivers detailed responses grounded in legal authority and precedent. |
|
|
|
**Important Legal Disclaimer:** This platform provides informational content only and does not constitute legal advice. For specific legal matters, always consult with a qualified attorney licensed in your jurisdiction. |
|
""" |
|
) |
|
|
|
|
|
with gr.Group(elem_classes="dashboard-card-section"): |
|
gr.Markdown("<h3 class='section-title'>API Configuration</h3>") |
|
api_key_input = gr.Textbox( |
|
label="OpenAI API Key", |
|
type="password", |
|
placeholder="Enter your OpenAI API key (sk-...)", |
|
info="Required for query processing. Obtain from: platform.openai.com/api-keys", |
|
lines=1 |
|
) |
|
|
|
|
|
with gr.Group(elem_classes="dashboard-card-section"): |
|
gr.Markdown("<h3 class='section-title'>Legal Query Interface</h3>") |
|
with gr.Row(elem_classes="input-row"): |
|
with gr.Column(elem_classes="input-field", scale=3): |
|
query_input = gr.Textbox( |
|
label="Legal Question", |
|
placeholder="Enter your landlord-tenant law question here...", |
|
lines=4, |
|
max_lines=8 |
|
) |
|
with gr.Column(elem_classes="input-field", scale=1): |
|
state_input = gr.Radio( |
|
label="Jurisdiction", |
|
choices=radio_choices, |
|
value=initial_value_radio |
|
) |
|
with gr.Row(elem_classes="button-row"): |
|
clear_button = gr.Button("Clear Form", variant="secondary") |
|
submit_button = gr.Button("Analyze Query", variant="primary") |
|
|
|
|
|
with gr.Group(elem_classes="dashboard-card-section"): |
|
gr.Markdown("<h3 class='section-title'>Legal Analysis Results</h3>") |
|
output = gr.HTML( |
|
value="<div class='placeholder'>Your comprehensive legal analysis will appear here after submitting your query.</div>", |
|
elem_classes="output-content-wrapper" |
|
) |
|
|
|
|
|
with gr.Group(elem_classes="dashboard-card-section examples-section"): |
|
gr.Markdown("<h3 class='section-title'>Sample Legal Queries</h3>") |
|
if example_queries: |
|
gr.Examples( |
|
examples=example_queries, |
|
inputs=[query_input, state_input], |
|
examples_per_page=5, |
|
label="" |
|
) |
|
else: |
|
gr.Markdown("<div class='placeholder'>Sample queries are currently unavailable. Please ensure the legal database is properly configured.</div>") |
|
|
|
|
|
with gr.Group(elem_classes="app-footer-wrapper"): |
|
gr.Markdown( |
|
""" |
|
**Legal Notice:** This platform is designed for informational and research purposes only. It does not establish an attorney-client relationship and should not be relied upon as a substitute for professional legal counsel. |
|
|
|
**Platform Development:** Created by **Nischal Subedi** • [LinkedIn](https://www.linkedin.com/in/nischal1/) • [Professional Insights](https://datascientistinsights.substack.com/) |
|
""" |
|
) |
|
|
|
|
|
submit_button.click( |
|
fn=query_interface_wrapper, |
|
inputs=[api_key_input, query_input, state_input], |
|
outputs=output, |
|
api_name="submit_query" |
|
) |
|
|
|
clear_button.click( |
|
fn=lambda: ( |
|
"", |
|
"", |
|
initial_value_radio, |
|
"<div class='placeholder'>Form cleared successfully. Ready for your next legal query.</div>" |
|
), |
|
inputs=[], |
|
outputs=[api_key_input, query_input, state_input, output] |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
logging.info("Starting Landlord-Tenant Rights Bot application...") |
|
try: |
|
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
DEFAULT_PDF_PATH = os.path.join(SCRIPT_DIR, "tenant-landlord.pdf") |
|
DEFAULT_DB_PATH = os.path.join(SCRIPT_DIR, "chroma_db") |
|
|
|
PDF_PATH = os.getenv("PDF_PATH", DEFAULT_PDF_PATH) |
|
VECTOR_DB_PATH = os.getenv("VECTOR_DB_PATH", DEFAULT_DB_PATH) |
|
|
|
|
|
os.makedirs(os.path.dirname(VECTOR_DB_PATH), exist_ok=True) |
|
|
|
logging.info(f"Attempting to load PDF from: {PDF_PATH}") |
|
if not os.path.exists(PDF_PATH): |
|
logging.error(f"FATAL: PDF file not found at the specified path: {PDF_PATH}") |
|
print(f"\n--- CONFIGURATION ERROR ---\nPDF file ('{os.path.basename(PDF_PATH)}') not found at: {PDF_PATH}.\nPlease ensure it exists or set 'PDF_PATH' environment variable.\n---------------------------\n") |
|
exit(1) |
|
|
|
if not os.access(PDF_PATH, os.R_OK): |
|
logging.error(f"FATAL: PDF file at '{PDF_PATH}' exists but is not readable. Check file permissions.") |
|
print(f"\n--- PERMISSION ERROR ---\nPDF file ('{os.path.basename(PDF_PATH)}') found but not readable at: {PDF_PATH}\nPlease check file permissions (e.g., using 'chmod +r' in terminal).\n---------------------------\n") |
|
exit(1) |
|
|
|
logging.info(f"PDF file '{os.path.basename(PDF_PATH)}' found and is readable.") |
|
|
|
|
|
vector_db_instance = VectorDatabase(persist_directory=VECTOR_DB_PATH) |
|
rag = RAGSystem(vector_db=vector_db_instance) |
|
|
|
|
|
rag.load_pdf(PDF_PATH) |
|
|
|
|
|
app_interface = rag.gradio_interface() |
|
SERVER_PORT = int(os.getenv("PORT", 7860)) |
|
|
|
logging.info(f"Launching Gradio app on http://0.0.0.0:{SERVER_PORT}") |
|
print(f"\n--- Gradio App Running ---\nAccess at: http://localhost:{SERVER_PORT} or your public Spaces URL\n--------------------------\n") |
|
app_interface.launch(server_name="0.0.0.0", server_port=SERVER_PORT, share=False) |
|
|
|
except ModuleNotFoundError as e: |
|
if "vector_db" in str(e): |
|
logging.error(f"FATAL: Could not import VectorDatabase. Ensure 'vector_db.py' is in the same directory and 'chromadb', 'langchain', 'pypdf', 'sentence-transformers' are installed.", exc_info=True) |
|
print(f"\n--- MISSING DEPENDENCY OR FILE ---\nCould not find/import 'vector_db.py' or one of its dependencies.\nError: {e}\nPlease ensure 'vector_db.py' is present and all required packages (chromadb, langchain, pypdf, sentence-transformers, etc.) are in your requirements.txt and installed.\n---------------------------\n") |
|
else: |
|
logging.error(f"Application startup failed due to a missing module: {str(e)}", exc_info=True) |
|
print(f"\n--- FATAL STARTUP ERROR - MISSING MODULE ---\n{str(e)}\nPlease ensure all dependencies are installed.\nCheck logs for more details.\n---------------------------\n") |
|
exit(1) |
|
except FileNotFoundError as e: |
|
logging.error(f"Application startup failed due to a missing file: {str(e)}", exc_info=True) |
|
print(f"\n--- FATAL STARTUP ERROR - FILE NOT FOUND ---\n{str(e)}\nPlease ensure the file exists at the specified path.\nCheck logs for more details.\n---------------------------\n") |
|
exit(1) |
|
except Exception as e: |
|
logging.error(f"Application startup failed: {str(e)}", exc_info=True) |
|
print(f"\n--- FATAL STARTUP ERROR ---\n{str(e)}\nCheck logs for more details.\n---------------------------\n") |
|
exit(1) |