Nischal Subedi commited on
Commit
b9756ef
·
1 Parent(s): f46b871

Add Tenant-Rights-Bot files

Browse files
Files changed (4) hide show
  1. README.md +24 -14
  2. app.py +280 -50
  3. requirements.txt +15 -1
  4. vector_db.py +191 -0
README.md CHANGED
@@ -1,14 +1,24 @@
1
- ---
2
- title: Tenant Rights Bot
3
- emoji: 💬
4
- colorFrom: yellow
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 5.0.1
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- short_description: 'A Gradio app to answer questions about landlord-tenant laws '
12
- ---
13
-
14
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
 
 
 
 
 
 
 
 
 
 
1
+ # Tenant Rights Bot
2
+
3
+ A Gradio app to answer questions about landlord-tenant laws across U.S. states, grounded in legal statutes.
4
+
5
+ ## How to Use
6
+ 1. Enter your OpenAI API key (get one from [OpenAI](https://platform.openai.com/api-keys)).
7
+ 2. Select a U.S. state from the dropdown.
8
+ 3. Ask your question about landlord-tenant laws (e.g., "What are the eviction rules in California?").
9
+ 4. View the response, which will include citations to relevant statutes.
10
+
11
+ ## Features
12
+ - Answers are grounded in state-specific legal statutes.
13
+ - Supports all U.S. states with data from a comprehensive landlord-tenant law document.
14
+ - Provides practical examples to help users understand the laws.
15
+
16
+ ## Requirements
17
+ - An OpenAI API key is required to use the app.
18
+ - The app uses the `gpt-3.5-turbo` model for generating answers.
19
+
20
+ ## License
21
+ This project is licensed under the [OpenRAIL License](https://huggingface.co/spaces/license/OpenRAIL).
22
+
23
+ ## Note
24
+ This app is for informational purposes only and is not a substitute for legal advice. Always consult a legal professional for specific legal issues.
app.py CHANGED
@@ -1,64 +1,294 @@
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from typing import Dict, List, Optional
4
+ import logging
5
+ from functools import lru_cache
6
  import gradio as gr
7
+ from langchain_openai import ChatOpenAI
8
+ from langchain.prompts import PromptTemplate
9
+ from langchain.chains import LLMChain
10
+ from vector_db import VectorDatabase
11
+ import re
12
 
13
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
 
 
 
14
 
15
+ class RAGSystem:
16
+ def __init__(self, vector_db: Optional[VectorDatabase] = None):
17
+ logging.info("Initializing RAGSystem")
18
+
19
+ self.vector_db = vector_db if vector_db else VectorDatabase()
20
+
21
+ # LLM and chain will be initialized later with user-provided API key
22
+ self.llm = None
23
+ self.chain = None
24
+
25
+ # Prompt template for statute-grounded answers
26
+ self.prompt_template = PromptTemplate(
27
+ input_variables=["query", "context", "state", "statutes"],
28
+ template="""You are a legal assistant specializing in tenant rights and landlord-tenant laws. Your goal is to provide accurate, detailed, and helpful answers that are explicitly grounded in the statutes provided in the context. Only use general knowledge to supplement the answer if the context lacks sufficient detail to fully answer the question, and clearly indicate when you are doing so.
29
 
30
+ Instructions:
31
+ - Use the context information and the provided statutes as the primary source to answer the question.
32
+ - Explicitly cite the relevant statute(s) (e.g., (AS § 34.03.220(a)(2))) in your answer to ground your response in the legal text.
33
+ - If multiple statutes are relevant, cite all that apply.
34
+ - If the context does not contain a relevant statute to answer the question, state that no specific statute was found and provide a general answer, clearly marking it as general knowledge.
35
+ - Provide detailed answers with practical examples or scenarios when possible.
36
+ - Use bullet points or numbered lists for clarity when applicable.
37
+ - Maintain a professional and neutral tone.
38
+ - Do not include a "Sources" section in the answer.
39
 
40
+ Question: {query}
41
+ State: {state}
 
 
 
42
 
43
+ Statutes found in context:
44
+ {statutes}
45
 
46
+ Context information:
47
+ {context}
48
 
49
+ Answer:"""
50
+ )
 
 
 
 
 
 
51
 
52
+ def initialize_llm(self, openai_api_key: str):
53
+ """Initialize the LLM and chain with the provided API key."""
54
+ if not openai_api_key:
55
+ raise ValueError("OpenAI API key is required.")
56
+
57
+ try:
58
+ self.llm = ChatOpenAI(
59
+ temperature=0.2,
60
+ openai_api_key=openai_api_key,
61
+ model_name="gpt-3.5-turbo",
62
+ max_tokens=1500,
63
+ request_timeout=30
64
+ )
65
+ logging.info("OpenAI LLM initialized successfully")
66
+
67
+ self.chain = LLMChain(llm=self.llm, prompt=self.prompt_template)
68
+ logging.info("LLMChain created successfully")
69
+ except Exception as e:
70
+ logging.error(f"Failed to initialize OpenAI LLM: {str(e)}")
71
+ raise
72
 
73
+ def extract_statutes(self, context: str) -> str:
74
+ """
75
+ Extract statute citations from the context using a regex pattern.
76
+ Returns a string of statutes, one per line, or a message if none are found.
77
+ """
78
+ statute_pattern = r'\([A-Za-z0-9§\.\s-]+\)'
79
+ statutes = re.findall(statute_pattern, context)
80
+ if statutes:
81
+ return "\n".join(statutes)
82
+ return "No statutes found in the context."
83
 
84
+ @lru_cache(maxsize=100)
85
+ def process_query(self, query: str, state: str, openai_api_key: str, n_results: int = 5) -> Dict[str, any]:
86
+ logging.info(f"Processing query: '{query}' for state: {state}")
87
+
88
+ if not state:
89
+ return {
90
+ "answer": "Please select a state to proceed with your query.",
91
+ "sources": [],
92
+ "context_used": "N/A",
93
+ "statutes_found": "N/A"
94
+ }
95
+
96
+ if not openai_api_key:
97
+ return {
98
+ "answer": "Please provide an OpenAI API key to proceed.",
99
+ "sources": [],
100
+ "context_used": "N/A",
101
+ "statutes_found": "N/A"
102
+ }
103
+
104
+ # Initialize LLM with the provided API key if not already initialized
105
+ if not self.llm or not self.chain:
106
+ try:
107
+ self.initialize_llm(openai_api_key)
108
+ except Exception as e:
109
+ return {
110
+ "answer": f"Failed to initialize LLM with the provided API key: {str(e)}",
111
+ "sources": [],
112
+ "context_used": "N/A",
113
+ "statutes_found": "N/A"
114
+ }
115
+
116
+ try:
117
+ results = self.vector_db.query(query, state=state, n_results=n_results)
118
+ logging.info("Vector database query successful")
119
+ except Exception as e:
120
+ logging.error(f"Vector database query failed: {str(e)}")
121
+ return {
122
+ "answer": "An error occurred while querying the database. Please try again.",
123
+ "sources": [],
124
+ "context_used": "N/A",
125
+ "statutes_found": "N/A"
126
+ }
127
+
128
+ context_parts = []
129
+ sources = []
130
+
131
+ if results["document_results"]["documents"]:
132
+ for i, doc in enumerate(results["document_results"]["documents"][0]):
133
+ metadata = results["document_results"]["metadatas"][0][i]
134
+ context_parts.append(f"[{metadata['state']} - Chunk {metadata.get('chunk_id', 'N/A')}] {doc}")
135
+ sources.append({
136
+ "text": doc[:100] + "..." if len(doc) > 100 else doc,
137
+ "state": metadata["state"],
138
+ "chunk_id": str(metadata.get("chunk_id", "N/A")),
139
+ "source_file": metadata.get("source", "Unknown")
140
+ })
141
+
142
+ if results["state_results"]["documents"]:
143
+ for i, doc in enumerate(results["state_results"]["documents"][0]):
144
+ metadata = results["state_results"]["metadatas"][0][i]
145
+ context_parts.append(f"[{metadata['state']} - Summary] {doc}")
146
+ sources.append({
147
+ "text": doc[:100] + "..." if len(doc) > 100 else doc,
148
+ "state": metadata["state"],
149
+ "type": metadata.get("type", "summary"),
150
+ "source_file": "state_summary"
151
+ })
152
+
153
+ context = "\n\n---\n\n".join(context_parts) if context_parts else "No relevant context found."
154
+
155
+ if not context_parts:
156
+ logging.info("No relevant context found for query")
157
+ return {
158
+ "answer": "I don't have sufficient information in my database to answer this question accurately. However, I can provide some general information about tenant rights.",
159
+ "sources": [],
160
+ "context_used": context,
161
+ "statutes_found": "N/A"
162
+ }
163
+
164
+ # Extract statutes from the context
165
+ statutes = self.extract_statutes(context)
166
+
167
+ try:
168
+ answer = self.chain.invoke({
169
+ "query": query,
170
+ "context": context,
171
+ "state": state,
172
+ "statutes": statutes
173
+ })
174
+ logging.info("LLM generated answer successfully")
175
+ except Exception as e:
176
+ logging.error(f"LLM processing failed: {str(e)}")
177
+ return {
178
+ "answer": "An error occurred while generating the answer. Please try again.",
179
+ "sources": sources,
180
+ "context_used": context,
181
+ "statutes_found": statutes
182
+ }
183
+
184
+ return {
185
+ "answer": answer['text'].strip(),
186
+ "sources": sources,
187
+ "context_used": context,
188
+ "statutes_found": statutes
189
+ }
190
+
191
+ def get_states(self) -> List[str]:
192
+ try:
193
+ states = self.vector_db.get_states()
194
+ logging.info(f"Retrieved {len(states)} states from database")
195
+ return states
196
+ except Exception as e:
197
+ logging.error(f"Failed to get states: {str(e)}")
198
+ return []
199
 
200
+ def load_pdf(self, pdf_path: str) -> int:
201
+ try:
202
+ num_states = self.vector_db.process_and_load_pdf(pdf_path)
203
+ logging.info(f"Loaded PDF with {num_states} states")
204
+ return num_states
205
+ except Exception as e:
206
+ logging.error(f"Failed to load PDF: {str(e)}")
207
+ return 0
208
+
209
+ def gradio_interface(self) -> gr.Interface:
210
+ def query_interface(api_key: str, query: str, state: str) -> str:
211
+ if not api_key:
212
+ return "Please provide an OpenAI API key to proceed."
213
+ if not state:
214
+ return "Please select a state to proceed with your query."
215
+ result = self.process_query(query, state=state, openai_api_key=api_key)
216
+ return f"**Answer:**\n{result['answer']}\n\n**Statutes Found:**\n{result['statutes_found']}"
217
+
218
+ states = self.get_states()
219
+
220
+ example_queries = [
221
+ ["sk-abc123", "What is the rent due date law?", "California"],
222
+ ["sk-abc123", "What are the rules for security deposit returns?", "New York"],
223
+ ["sk-abc123", "Can a landlord enter without notice?", "Texas"],
224
+ ["sk-abc123", "What are the eviction notice requirements?", "Florida"],
225
+ ["sk-abc123", "Are there rent control laws?", "Oregon"]
226
+ ]
227
+
228
+ interface = gr.Interface(
229
+ fn=query_interface,
230
+ inputs=[
231
+ gr.Textbox(
232
+ label="Enter your OpenAI API Key",
233
+ type="password",
234
+ placeholder="e.g., sk-abc123"
235
+ ),
236
+ gr.Textbox(
237
+ label="Enter your question about Landlord-Tenant laws",
238
+ placeholder="e.g., What are the eviction rules?",
239
+ lines=2
240
+ ),
241
+ gr.Dropdown(
242
+ label="Select a state (required)",
243
+ choices=states,
244
+ value=None,
245
+ allow_custom_value=False
246
+ )
247
+ ],
248
+ outputs=gr.Markdown(
249
+ label="Response",
250
+ elem_classes="output-markdown"
251
+ ),
252
+ title="🏠 Landlord-Tenant Rights Bot",
253
+ description="Ask questions about tenant rights and landlord-tenant laws based on state-specific legal documents. Provide your OpenAI API key, select a state, and enter your question below. You can get an API key from [OpenAI](https://platform.openai.com/api-keys).",
254
+ examples=example_queries,
255
+ theme=gr.themes.Soft(),
256
+ css="""
257
+ .output-markdown {
258
+ background-color: #f8f9fa;
259
+ padding: 20px;
260
+ border-radius: 10px;
261
+ border: 1px solid #e0e0e0;
262
+ font-size: 16px;
263
+ line-height: 1.6;
264
+ }
265
+ .gr-button-primary {
266
+ background-color: #4a90e2;
267
+ border: none;
268
+ padding: 10px 20px;
269
+ font-weight: bold;
270
+ }
271
+ .gr-button-primary:hover {
272
+ background-color: #357abd;
273
+ }
274
+ .gr-form {
275
+ max-width: 800px;
276
+ margin: 0 auto;
277
+ }
278
+ """
279
+ )
280
+ return interface
281
 
282
  if __name__ == "__main__":
283
+ try:
284
+ rag = RAGSystem()
285
+
286
+ pdf_path = "data/tenant-landlord.pdf"
287
+ rag.load_pdf(pdf_path)
288
+
289
+ interface = rag.gradio_interface()
290
+ interface.launch(share=True)
291
+
292
+ except Exception as e:
293
+ logging.error(f"Main execution failed: {str(e)}")
294
+ raise
requirements.txt CHANGED
@@ -1 +1,15 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ huggingface_hub==0.25.2
2
+ gradio==4.44.0
3
+ langchain==0.3.1
4
+ langchain-openai==0.2.0 # Add this for the new OpenAI integration
5
+ openai==1.40.0
6
+ chromadb==0.5.5
7
+ sentence-transformers==3.0.1
8
+ torch==2.2.2
9
+ python-dotenv==1.0.1
10
+ tiktoken==0.7.0
11
+ numpy==1.26.4
12
+ pandas==2.2.2
13
+ huggingface_hub==0.23.4
14
+ pymupdf==1.24.9langchain_community
15
+ langchain_community
vector_db.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import fitz # PyMuPDF
3
+ import re
4
+ import chromadb
5
+ from chromadb.utils import embedding_functions
6
+ import numpy as np
7
+ import torch
8
+ import logging
9
+
10
+ # Set up logging
11
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
12
+
13
+ class VectorDatabase:
14
+ """Vector database for storing and retrieving tenant rights information from PDF."""
15
+
16
+ def __init__(self, persist_directory="./data/chroma_db"):
17
+ """Initialize the vector database."""
18
+ logging.info("Initializing VectorDatabase")
19
+ logging.info(f"NumPy version: {np.__version__}")
20
+ logging.info(f"PyTorch version: {torch.__version__}")
21
+
22
+ self.persist_directory = persist_directory
23
+ os.makedirs(persist_directory, exist_ok=True)
24
+
25
+ try:
26
+ logging.info("Creating embedding function")
27
+ self.embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
28
+ model_name="all-MiniLM-L6-v2"
29
+ )
30
+
31
+ logging.info("Initializing ChromaDB client")
32
+ self.client = chromadb.PersistentClient(path=persist_directory)
33
+
34
+ logging.info("Setting up collections")
35
+ self.document_collection = self._get_or_create_collection("tenant_documents")
36
+ self.state_collection = self._get_or_create_collection("tenant_states")
37
+ except Exception as e:
38
+ logging.error(f"Initialization failed: {str(e)}")
39
+ raise
40
+
41
+ def _get_or_create_collection(self, name):
42
+ """Get or create a collection with the given name."""
43
+ try:
44
+ return self.client.get_collection(
45
+ name=name,
46
+ embedding_function=self.embedding_function
47
+ )
48
+ except Exception:
49
+ return self.client.create_collection(
50
+ name=name,
51
+ embedding_function=self.embedding_function
52
+ )
53
+
54
+ def extract_pdf_content(self, pdf_path):
55
+ """Extract content from PDF file and identify state sections."""
56
+ logging.info(f"Extracting content from PDF: {pdf_path}")
57
+
58
+ if not os.path.exists(pdf_path):
59
+ raise FileNotFoundError(f"PDF file not found: {pdf_path}")
60
+
61
+ doc = fitz.open(pdf_path)
62
+ full_text = ""
63
+ for page_num in range(len(doc)):
64
+ page = doc.load_page(page_num)
65
+ full_text += page.get_text("text") + "\n"
66
+ doc.close()
67
+
68
+ state_pattern = r"(?m)^\s*([A-Z][a-z]+(?:\s[A-Z][a-z]+)*)\s+Landlord(?:-|\s)Tenant\s+(?:Law|Laws)"
69
+ state_matches = list(re.finditer(state_pattern, full_text))
70
+
71
+ if not state_matches:
72
+ logging.info("No state sections found. Treating as single document.")
73
+ return {"Full Document": full_text.strip()}
74
+
75
+ state_sections = {}
76
+ for i, match in enumerate(state_matches):
77
+ state_name = match.group(1).strip()
78
+ start_pos = match.end()
79
+ end_pos = state_matches[i + 1].start() if i + 1 < len(state_matches) else len(full_text)
80
+ state_text = full_text[start_pos:end_pos].strip()
81
+ if state_text:
82
+ state_sections[state_name] = state_text
83
+
84
+ logging.info(f"Extracted content for {len(state_sections)} states")
85
+ return state_sections
86
+
87
+ def process_and_load_pdf(self, pdf_path):
88
+ """Process PDF and load content into vector database."""
89
+ state_sections = self.extract_pdf_content(pdf_path)
90
+
91
+ doc_ids = self.document_collection.get()["ids"]
92
+ state_ids = self.state_collection.get()["ids"]
93
+
94
+ if doc_ids:
95
+ self.document_collection.delete(ids=doc_ids)
96
+ if state_ids:
97
+ self.state_collection.delete(ids=state_ids)
98
+
99
+ document_ids, document_texts, document_metadatas = [], [], []
100
+ state_ids, state_texts, state_metadatas = [], [], []
101
+
102
+ for state, text in state_sections.items():
103
+ state_id = f"state_{state.lower().replace(' ', '_')}"
104
+ summary = text[:1000].strip() if len(text) > 1000 else text
105
+ state_ids.append(state_id)
106
+ state_texts.append(summary)
107
+ state_metadatas.append({"state": state, "type": "summary"})
108
+
109
+ chunks = self._chunk_text(text, chunk_size=1000, overlap=200)
110
+ for i, chunk in enumerate(chunks):
111
+ doc_id = f"doc_{state.lower().replace(' ', '_')}_{i}"
112
+ document_ids.append(doc_id)
113
+ document_texts.append(chunk)
114
+ document_metadatas.append({
115
+ "state": state,
116
+ "chunk_id": i,
117
+ "total_chunks": len(chunks),
118
+ "source": os.path.basename(pdf_path)
119
+ })
120
+
121
+ if document_ids:
122
+ self.document_collection.add(
123
+ ids=document_ids,
124
+ documents=document_texts,
125
+ metadatas=document_metadatas
126
+ )
127
+ if state_ids:
128
+ self.state_collection.add(
129
+ ids=state_ids,
130
+ documents=state_texts,
131
+ metadatas=state_metadatas
132
+ )
133
+
134
+ logging.info(f"Loaded {len(document_ids)} document chunks and {len(state_ids)} state summaries")
135
+ return len(state_sections)
136
+
137
+ def _chunk_text(self, text, chunk_size=1000, overlap=200):
138
+ """Split text into overlapping chunks."""
139
+ if not text:
140
+ return []
141
+
142
+ chunks = []
143
+ start = 0
144
+ text_length = len(text)
145
+
146
+ while start < text_length:
147
+ end = min(start + chunk_size, text_length)
148
+ if end < text_length:
149
+ last_period = text.rfind(".", start, end)
150
+ last_newline = text.rfind("\n", start, end)
151
+ split_point = max(last_period, last_newline)
152
+ if split_point > start:
153
+ end = split_point + 1
154
+ chunks.append(text[start:end].strip())
155
+ start = end - overlap if end - overlap > start else end
156
+
157
+ return chunks
158
+
159
+ def query(self, query_text, state=None, n_results=5):
160
+ """Query the vector database for relevant tenant rights information."""
161
+ state_filter = {"state": state} if state else None
162
+
163
+ document_results = self.document_collection.query(
164
+ query_texts=[query_text],
165
+ n_results=n_results,
166
+ where=state_filter
167
+ )
168
+ state_results = self.state_collection.query(
169
+ query_texts=[query_text],
170
+ n_results=n_results,
171
+ where=state_filter
172
+ )
173
+
174
+ return {"document_results": document_results, "state_results": state_results}
175
+
176
+ def get_states(self):
177
+ """Get a list of all states in the database."""
178
+ results = self.state_collection.get()
179
+ states = {meta["state"] for meta in results["metadatas"] if meta}
180
+ return sorted(list(states))
181
+
182
+ if __name__ == "__main__":
183
+ try:
184
+ db = VectorDatabase()
185
+ pdf_path = "data/tenant-landlord.pdf"
186
+ db.process_and_load_pdf(pdf_path)
187
+ states = db.get_states()
188
+ print(f"Available states: {states}")
189
+ except Exception as e:
190
+ logging.error(f"Script execution failed: {str(e)}")
191
+ raise