Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.model_selection import train_test_split, GridSearchCV
|
5 |
+
from sklearn.svm import SVC
|
6 |
+
from sklearn.preprocessing import StandardScaler
|
7 |
+
import scipy
|
8 |
+
from scipy import signal
|
9 |
+
import pickle
|
10 |
+
|
11 |
+
def get_data_preview(file):
|
12 |
+
data = pd.read_csv(file.name)
|
13 |
+
return data.head()
|
14 |
+
|
15 |
+
def label_data(file, start, end, label):
|
16 |
+
data = pd.read_csv(file.name)
|
17 |
+
data.loc[start:end, 'label'] = label # Label the specified range
|
18 |
+
return data
|
19 |
+
|
20 |
+
def preprocess_data(data):
|
21 |
+
data.drop(columns=data.columns[0], axis=1, inplace=True)
|
22 |
+
data.columns = ['raw_eeg', 'label']
|
23 |
+
raw_data = data['raw_eeg']
|
24 |
+
labels_old = data['label']
|
25 |
+
|
26 |
+
sampling_rate = 512
|
27 |
+
notch_freq = 50.0
|
28 |
+
lowcut, highcut = 0.5, 30.0
|
29 |
+
|
30 |
+
nyquist = (0.5 * sampling_rate)
|
31 |
+
notch_freq_normalized = notch_freq / nyquist
|
32 |
+
b_notch, a_notch = signal.iirnotch(notch_freq_normalized, Q=0.05, fs=sampling_rate)
|
33 |
+
|
34 |
+
lowcut_normalized = lowcut / nyquist
|
35 |
+
highcut_normalized = highcut / nyquist
|
36 |
+
b_bandpass, a_bandpass = signal.butter(4, [lowcut_normalized, highcut_normalized], btype='band')
|
37 |
+
|
38 |
+
features = []
|
39 |
+
labels = []
|
40 |
+
|
41 |
+
def calculate_psd_features(segment, sampling_rate):
|
42 |
+
f, psd_values = scipy.signal.welch(segment, fs=sampling_rate, nperseg=len(segment))
|
43 |
+
alpha_indices = np.where((f >= 8) & (f <= 13))
|
44 |
+
beta_indices = np.where((f >= 14) & (f <= 30))
|
45 |
+
theta_indices = np.where((f >= 4) & (f <= 7))
|
46 |
+
delta_indices = np.where((f >= 0.5) & (f <= 3))
|
47 |
+
energy_alpha = np.sum(psd_values[alpha_indices])
|
48 |
+
energy_beta = np.sum(psd_values[beta_indices])
|
49 |
+
energy_theta = np.sum(psd_values[theta_indices])
|
50 |
+
energy_delta = np.sum(psd_values[delta_indices])
|
51 |
+
alpha_beta_ratio = energy_alpha / energy_beta
|
52 |
+
return {
|
53 |
+
'E_alpha': energy_alpha,
|
54 |
+
'E_beta': energy_beta,
|
55 |
+
'E_theta': energy_theta,
|
56 |
+
'E_delta': energy_delta,
|
57 |
+
'alpha_beta_ratio': alpha_beta_ratio
|
58 |
+
}
|
59 |
+
|
60 |
+
def calculate_additional_features(segment, sampling_rate):
|
61 |
+
f, psd = scipy.signal.welch(segment, fs=sampling_rate, nperseg=len(segment))
|
62 |
+
peak_frequency = f[np.argmax(psd)]
|
63 |
+
spectral_centroid = np.sum(f * psd) / np.sum(psd)
|
64 |
+
log_f = np.log(f[1:])
|
65 |
+
log_psd = np.log(psd[1:])
|
66 |
+
spectral_slope = np.polyfit(log_f, log_psd, 1)[0]
|
67 |
+
return {
|
68 |
+
'peak_frequency': peak_frequency,
|
69 |
+
'spectral_centroid': spectral_centroid,
|
70 |
+
'spectral_slope': spectral_slope
|
71 |
+
}
|
72 |
+
|
73 |
+
for i in range(0, len(raw_data) - 512, 256):
|
74 |
+
segment = raw_data.loc[i:i+512]
|
75 |
+
segment = pd.to_numeric(segment, errors='coerce')
|
76 |
+
segment = signal.filtfilt(b_notch, a_notch, segment)
|
77 |
+
segment = signal.filtfilt(b_bandpass, a_bandpass, segment)
|
78 |
+
segment_features = calculate_psd_features(segment, 512)
|
79 |
+
additional_features = calculate_additional_features(segment, 512)
|
80 |
+
segment_features = {**segment_features, **additional_features}
|
81 |
+
features.append(segment_features)
|
82 |
+
labels.append(labels_old[i])
|
83 |
+
|
84 |
+
columns = ['E_alpha', 'E_beta', 'E_theta', 'E_delta', 'alpha_beta_ratio', 'peak_frequency', 'spectral_centroid', 'spectral_slope']
|
85 |
+
df_features = pd.DataFrame(features, columns=columns)
|
86 |
+
df_features['label'] = labels
|
87 |
+
return df_features
|
88 |
+
|
89 |
+
def train_model(data):
|
90 |
+
scaler = StandardScaler()
|
91 |
+
X = data.drop('label', axis=1)
|
92 |
+
y = data['label']
|
93 |
+
X_scaled = scaler.fit_transform(X)
|
94 |
+
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
|
95 |
+
|
96 |
+
param_grid = {'C': [0.1, 1, 10, 100], 'gamma': ['scale', 'auto', 0.1, 0.01, 0.001, 0.0001], 'kernel': ['rbf']}
|
97 |
+
svc = SVC(probability=True)
|
98 |
+
grid_search = GridSearchCV(estimator=svc, param_grid=param_grid, cv=5, verbose=2, n_jobs=-1)
|
99 |
+
grid_search.fit(X_train, y_train)
|
100 |
+
|
101 |
+
model = grid_search.best_estimator_
|
102 |
+
model_filename = 'model.pkl'
|
103 |
+
scaler_filename = 'scaler.pkl'
|
104 |
+
|
105 |
+
with open(model_filename, 'wb') as file:
|
106 |
+
pickle.dump(model, file)
|
107 |
+
|
108 |
+
with open(scaler_filename, 'wb') as file:
|
109 |
+
pickle.dump(scaler, file)
|
110 |
+
|
111 |
+
return f"Training complete! Model and scaler saved.", gr.File(model_filename), gr.File(scaler_filename)
|
112 |
+
|
113 |
+
|
114 |
+
with gr.Blocks() as demo:
|
115 |
+
file_input = gr.File(label="Upload CSV File")
|
116 |
+
data_preview = gr.Dataframe(label="Data Preview", interactive=False)
|
117 |
+
start_input = gr.Number(label="Start Index", value=0)
|
118 |
+
end_input = gr.Number(label="End Index", value=100)
|
119 |
+
label_input = gr.Number(label="Label Value", value=1)
|
120 |
+
labeled_data_preview = gr.Dataframe(label="Labeled Data Preview", interactive=False)
|
121 |
+
training_status = gr.Textbox(label="Training Status")
|
122 |
+
model_file = gr.File(label="Download Trained Model")
|
123 |
+
scaler_file = gr.File(label="Download Scaler")
|
124 |
+
|
125 |
+
file_input.upload(get_data_preview, inputs=file_input, outputs=data_preview)
|
126 |
+
label_button = gr.Button("Label Data")
|
127 |
+
label_button.click(label_data, inputs=[file_input, start_input, end_input, label_input], outputs=labeled_data_preview)
|
128 |
+
train_button = gr.Button("Train Model")
|
129 |
+
train_button.click(train_model, inputs=labeled_data_preview, outputs=[training_status, model_file, scaler_file])
|
130 |
+
|
131 |
+
demo.launch()
|