Umang-Bansal commited on
Commit
b3f473e
·
verified ·
1 Parent(s): 6acdc14

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md CHANGED
@@ -9,5 +9,62 @@ app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
9
  pinned: false
10
  license: apache-2.0
11
  ---
12
+ # EEG Signal Processing and Classification
13
+
14
+ This Gradio Space allows you to process and classify EEG signals. You can upload EEG data, label it, preprocess the data, and train a machine learning model directly in your browser.
15
+
16
+ ## Overview
17
+
18
+ This project provides an interface for:
19
+
20
+ 1. Uploading and previewing EEG data.
21
+ 2. Labeling data segments.
22
+ 3. Preprocessing data to extract features.
23
+ 4. Training a machine learning model.
24
+ 5. Downloading the trained model and scaler.
25
+
26
+ ## Demo
27
+
28
+ Check out the video demonstration below to see how to use the interface:
29
+
30
+ [![EEG Signal Processing Demo](https://img.youtube.com/vi/_vWz-p26roY/maxresdefault.jpg)](https://www.youtube.com/watch?v=_vWz-p26roY)
31
+
32
+ ## Full Instructable
33
+
34
+ For a detailed step-by-step guide, visit Instructable page [here](https://www.instructables.com/Controlling-Video-Game-Using-Brainwaves-EEG/).
35
+
36
+ ## Usage
37
+
38
+ ### Uploading Data
39
+
40
+ 1. Click on the "Upload CSV File" button to upload your EEG data.
41
+ 2. Preview the uploaded data in the "Data Preview" section.
42
+
43
+ ### Labeling Data
44
+
45
+ 1. Enter the start index, end index, and label for each segment in the "Ranges for Labeling" section.
46
+ 2. Click on the "Label Data" button to apply the labels.
47
+
48
+ ### Training the Model
49
+
50
+ 1. Click on the "Train Model" button to preprocess the data and train the model.
51
+ 2. Download the trained model and scaler using the provided links.
52
+
53
+ ## File Descriptions
54
+
55
+ - `app.py`: Contains the Gradio interface and main application logic.
56
+ - `requirements.txt`: Lists the dependencies required to run the project.
57
+ - `model.pkl`: The trained machine learning model (generated after training).
58
+ - `scaler.pkl`: The scaler used to preprocess the data (generated after training).
59
+
60
+ ## License
61
+
62
+ This project is licensed under the apache-2.0.
63
+
64
+ ## Acknowledgments
65
+
66
+ - Special thanks to the contributors and the open-source community.
67
+ - Thanks to the authors of the libraries used in this project.
68
+
69
 
70
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference