cloned / app.py
Uniaff's picture
Update app.py
2f8b626 verified
import os
import sys
import uuid
import subprocess
import gradio as gr
from pydub import AudioSegment
import tempfile
from scipy.io.wavfile import write, read
from TTS.api import TTS
# # Set environment variables to accept license terms
os.environ["COQUI_TOS_AGREED"] = "1"
# Глобальные переменные и настройки
language_options = {
"English (en)": "en",
"Spanish (es)": "es",
"French (fr)": "fr",
"German (de)": "de",
"Italian (it)": "it",
"Portuguese (pt)": "pt",
"Polish (pl)": "pl",
"Turkish (tr)": "tr",
"Russian (ru)": "ru",
"Dutch (nl)": "nl",
"Czech (cs)": "cs",
"Arabic (ar)": "ar",
"Chinese (zh-cn)": "zh-cn",
"Japanese (ja)": "ja",
"Hungarian (hu)": "hu",
"Korean (ko)": "ko",
"Hindi (hi)": "hi"
}
other_language = {
"Vietnamese": "vie",
"Serbian": "srp",
"Romanian": "ron",
"Indonesian": "ind",
"Philippine": "tgl",
"Bulgarian": "bul",
}
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2")
# Функции для голосового клонирования
def clean_audio(audio_path):
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_output:
out_filename = temp_output.name
lowpass_highpass = "lowpass=8000,highpass=75,"
trim_silence = "areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,"
try:
shell_command = f"ffmpeg -y -i {audio_path} -af {lowpass_highpass}{trim_silence} {out_filename}".split()
subprocess.run(shell_command, capture_output=True, check=True)
print(f"Audio cleaned and saved to {out_filename}")
return out_filename
except subprocess.CalledProcessError as e:
print(f"Error during audio cleaning: {e}")
return audio_path
def check_audio_length(audio_path, max_duration=120):
try:
audio = AudioSegment.from_file(audio_path)
duration = audio.duration_seconds
if duration > max_duration:
print(f"Audio is too long: {duration} seconds. Max allowed is {max_duration} seconds.")
return False
return True
except Exception as e:
print(f"Error while checking audio length: {e}")
return False
def synthesize_and_convert_voice(text, language_iso, voice_audio_path, speed):
tts_synthesis = TTS(model_name=f"tts_models/{language_iso}/fairseq/vits")
wav_data = tts_synthesis.tts(text, speed=speed)
tts_conversion = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False)
# Write wav_data to temporary file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_tts_wav_file:
temp_tts_wav_path = temp_tts_wav_file.name
write(temp_tts_wav_path, 22050, wav_data)
# Prepare output temporary file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_output_wav_file:
temp_output_wav_path = temp_output_wav_file.name
tts_conversion.voice_conversion_to_file(temp_tts_wav_path, target_wav=voice_audio_path,
file_path=temp_output_wav_path)
# Read converted audio from temp_output_wav_path
output_sample_rate, output_audio_data = read(temp_output_wav_path)
# Remove temporary files
os.remove(temp_tts_wav_path)
os.remove(temp_output_wav_path)
return (output_sample_rate, output_audio_data)
def synthesize_speech(text, speaker_wav_path, language_iso, speed):
# Generate speech using tts and save to temporary file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_tts_output:
temp_tts_output_path = temp_tts_output.name
tts.tts_to_file(text=text, file_path=temp_tts_output_path, speed=speed,
speaker_wav=speaker_wav_path, language=language_iso)
tts_conversion = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False)
# Prepare output temporary file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_output_wav_file:
temp_output_wav_path = temp_output_wav_file.name
tts_conversion.voice_conversion_to_file(temp_tts_output_path, target_wav=speaker_wav_path,
file_path=temp_output_wav_path)
# Read converted audio from temp_output_wav_path
output_sample_rate, output_audio_data = read(temp_output_wav_path)
# Remove temporary files
os.remove(temp_tts_output_path)
os.remove(temp_output_wav_path)
return (output_sample_rate, output_audio_data)
def get_language_code(selected_language):
if selected_language in language_options:
return language_options[selected_language]
elif selected_language in other_language:
return other_language[selected_language]
else:
return None
def process_speech(text, speaker_wav_path, selected_language, speed):
language_code = get_language_code(selected_language)
if language_code is None:
raise ValueError("Выбранный язык не поддерживается.")
if speaker_wav_path is None:
error_message = "Пожалуйста, загрузите аудио файл говорящего."
error = gr.Error(error_message, duration=5)
raise error
# Check audio length
audio = AudioSegment.from_file(speaker_wav_path)
duration = audio.duration_seconds
if duration > 120:
error_message = "Длина аудио превышает допустимый лимит в 2 минуты."
error = gr.Error(error_message, duration=5)
raise error
# Clean audio
cleaned_wav_path = clean_audio(speaker_wav_path)
if selected_language in other_language:
output_audio_data = synthesize_and_convert_voice(text, language_code, cleaned_wav_path, speed)
else:
output_audio_data = synthesize_speech(text, cleaned_wav_path, language_code, speed)
# Remove temporary files
os.remove(cleaned_wav_path)
return output_audio_data
def restart_program():
python = sys.executable
os.execl(python, python, *sys.argv)
# Функции для липсинка
def generate(video, audio, checkpoint, no_smooth, resize_factor, pad_top, pad_bottom, pad_left, pad_right, save_as_video):
if video is None or audio is None or checkpoint is None:
return "Пожалуйста, загрузите видео/изображение и аудио файл, а также выберите чекпойнт."
print(f"Текущая рабочая директория: {os.getcwd()}")
print(f"Содержимое текущей директории: {os.listdir('.')}")
print(f"Проверка наличия 'inference.py': {os.path.exists('inference.py')}")
video_path = video # Путь к видео или изображению
audio_path = audio # Путь к аудио
print(f"Путь к видео: {video_path}")
print(f"Путь к аудио: {audio_path}")
output_dir = "outputs"
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, "output.mp4")
print(f"Путь к выходному файлу: {output_path}")
args = [
"--checkpoint_path", f"checkpoints/{checkpoint}.pth",
"--segmentation_path", "checkpoints/face_segmentation.pth",
"--no_seg",
"--no_sr",
"--face", video_path,
"--audio", audio_path,
"--outfile", output_path,
"--resize_factor", str(resize_factor),
"--face_det_batch_size", "4",
"--wav2lip_batch_size", "64",
"--fps", "30",
"--pads", str(pad_top), str(pad_bottom), str(pad_left), str(pad_right)
]
if no_smooth:
args.append("--nosmooth")
if save_as_video:
args.append("--save_as_video")
try:
cmd = ["python", "inference.py"] + args
print(f"Запуск инференса с командой: {' '.join(cmd)}")
subprocess.run(cmd, check=True)
except subprocess.CalledProcessError as e:
print(f"Ошибка при выполнении команды: {e}")
return f"Произошла ошибка при обработке: {e}"
if not os.path.exists(output_path):
print("Выходной файл не существует.")
return "Не удалось создать выходное видео."
print(f"Выходной файл создан по пути: {output_path}")
return output_path # Возвращаем путь к выходному видео
# Создание Gradio интерфейса с вкладками
with gr.Blocks() as app:
gr.Markdown("# Voice Clone Union")
with gr.Tabs():
with gr.TabItem("Voice Clone"):
# Интерфейс для голосового клонирования
text_input = gr.Textbox(label="Введите текст для генерации", placeholder="Введите ваш текст здесь...")
speaker_wav_input = gr.Audio(label="Загрузите аудио файла говорящего (WAV формат)", type="filepath")
all_languages = list(language_options.keys()) + list(other_language.keys())
language_input = gr.Dropdown(
label="Язык",
choices=all_languages,
value="English (en)"
)
speed_input = gr.Slider(
label="Скорость синтеза",
minimum=0.1,
maximum=10,
step=0.1,
value=1.0,
info="Выберите скорость"
)
output_audio = gr.Audio(label="Сгенерированное аудио", type="filepath")
with gr.Row():
synthesize_button = gr.Button("Сгенерировать")
gr.HTML("<div style='width:300px;'></div>")
reload_button = gr.Button("Перезапустить")
synthesize_button.click(
fn=process_speech,
inputs=[text_input, speaker_wav_input, language_input, speed_input],
outputs=output_audio
)
reload_button.click(fn=restart_program, inputs=None, outputs=None)
with gr.TabItem("Lipsync"):
# Интерфейс для липсинка
gr.Markdown("## Lipsync")
with gr.Row():
video = gr.File(label="Видео или Изображение", type="filepath")
audio = gr.File(label="Аудио", type="filepath")
with gr.Column():
checkpoint = gr.Radio(["wav2lip", "wav2lip_gan"], label="Чекпойнт", value="wav2lip_gan", visible=False)
no_smooth = gr.Checkbox(label="Без сглаживания", value=False)
resize_factor = gr.Slider(minimum=1, maximum=4, step=1, label="Фактор изменения размера", value=2)
with gr.Row():
with gr.Column():
pad_top = gr.Slider(minimum=0, maximum=50, step=1, value=0, label="Отступ сверху")
pad_bottom = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Отступ снизу")
pad_left = gr.Slider(minimum=0, maximum=50, step=1, value=0, label="Отступ слева")
pad_right = gr.Slider(minimum=0, maximum=50, step=1, value=0, label="Отступ справа")
save_as_video = gr.Checkbox(label="Сохранять как видео", value=True)
generate_btn = gr.Button("Сгенерировать")
with gr.Column():
result = gr.Video(label="Результат")
generate_btn.click(
generate,
inputs=[video, audio, checkpoint, no_smooth, resize_factor, pad_top, pad_bottom, pad_left, pad_right, save_as_video],
outputs=result,
# concurrency_limit=30
)
def launch_gradio():
app.launch(
)
if __name__ == "__main__":
launch_gradio()