Spaces:
Running
Running
File size: 6,934 Bytes
6c343a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import random
import torch
from pathlib import Path
from torch.utils import data as data
from basicsr.data.transforms import augment, paired_random_crop
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor
from basicsr.utils.registry import DATASET_REGISTRY
@DATASET_REGISTRY.register()
class Vimeo90KDataset(data.Dataset):
"""Vimeo90K dataset for training.
The keys are generated from a meta info txt file.
basicsr/data/meta_info/meta_info_Vimeo90K_train_GT.txt
Each line contains:
1. clip name; 2. frame number; 3. image shape, separated by a white space.
Examples:
00001/0001 7 (256,448,3)
00001/0002 7 (256,448,3)
Key examples: "00001/0001"
GT (gt): Ground-Truth;
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames.
The neighboring frame list for different num_frame:
num_frame | frame list
1 | 4
3 | 3,4,5
5 | 2,3,4,5,6
7 | 1,2,3,4,5,6,7
Args:
opt (dict): Config for train dataset. It contains the following keys:
dataroot_gt (str): Data root path for gt.
dataroot_lq (str): Data root path for lq.
meta_info_file (str): Path for meta information file.
io_backend (dict): IO backend type and other kwarg.
num_frame (int): Window size for input frames.
gt_size (int): Cropped patched size for gt patches.
random_reverse (bool): Random reverse input frames.
use_hflip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h
and w for implementation).
scale (bool): Scale, which will be added automatically.
"""
def __init__(self, opt):
super(Vimeo90KDataset, self).__init__()
self.opt = opt
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq'])
with open(opt['meta_info_file'], 'r') as fin:
self.keys = [line.split(' ')[0] for line in fin]
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.is_lmdb = False
if self.io_backend_opt['type'] == 'lmdb':
self.is_lmdb = True
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root]
self.io_backend_opt['client_keys'] = ['lq', 'gt']
# indices of input images
self.neighbor_list = [i + (9 - opt['num_frame']) // 2 for i in range(opt['num_frame'])]
# temporal augmentation configs
self.random_reverse = opt['random_reverse']
logger = get_root_logger()
logger.info(f'Random reverse is {self.random_reverse}.')
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# random reverse
if self.random_reverse and random.random() < 0.5:
self.neighbor_list.reverse()
scale = self.opt['scale']
gt_size = self.opt['gt_size']
key = self.keys[index]
clip, seq = key.split('/') # key example: 00001/0001
# get the GT frame (im4.png)
if self.is_lmdb:
img_gt_path = f'{key}/im4'
else:
img_gt_path = self.gt_root / clip / seq / 'im4.png'
img_bytes = self.file_client.get(img_gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
# get the neighboring LQ frames
img_lqs = []
for neighbor in self.neighbor_list:
if self.is_lmdb:
img_lq_path = f'{clip}/{seq}/im{neighbor}'
else:
img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
img_bytes = self.file_client.get(img_lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
img_lqs.append(img_lq)
# randomly crop
img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path)
# augmentation - flip, rotate
img_lqs.append(img_gt)
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
img_results = img2tensor(img_results)
img_lqs = torch.stack(img_results[0:-1], dim=0)
img_gt = img_results[-1]
# img_lqs: (t, c, h, w)
# img_gt: (c, h, w)
# key: str
return {'lq': img_lqs, 'gt': img_gt, 'key': key}
def __len__(self):
return len(self.keys)
@DATASET_REGISTRY.register()
class Vimeo90KRecurrentDataset(Vimeo90KDataset):
def __init__(self, opt):
super(Vimeo90KRecurrentDataset, self).__init__(opt)
self.flip_sequence = opt['flip_sequence']
self.neighbor_list = [1, 2, 3, 4, 5, 6, 7]
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt)
# random reverse
if self.random_reverse and random.random() < 0.5:
self.neighbor_list.reverse()
scale = self.opt['scale']
gt_size = self.opt['gt_size']
key = self.keys[index]
clip, seq = key.split('/') # key example: 00001/0001
# get the neighboring LQ and GT frames
img_lqs = []
img_gts = []
for neighbor in self.neighbor_list:
if self.is_lmdb:
img_lq_path = f'{clip}/{seq}/im{neighbor}'
img_gt_path = f'{clip}/{seq}/im{neighbor}'
else:
img_lq_path = self.lq_root / clip / seq / f'im{neighbor}.png'
img_gt_path = self.gt_root / clip / seq / f'im{neighbor}.png'
# LQ
img_bytes = self.file_client.get(img_lq_path, 'lq')
img_lq = imfrombytes(img_bytes, float32=True)
# GT
img_bytes = self.file_client.get(img_gt_path, 'gt')
img_gt = imfrombytes(img_bytes, float32=True)
img_lqs.append(img_lq)
img_gts.append(img_gt)
# randomly crop
img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path)
# augmentation - flip, rotate
img_lqs.extend(img_gts)
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'])
img_results = img2tensor(img_results)
img_lqs = torch.stack(img_results[:7], dim=0)
img_gts = torch.stack(img_results[7:], dim=0)
if self.flip_sequence: # flip the sequence: 7 frames to 14 frames
img_lqs = torch.cat([img_lqs, img_lqs.flip(0)], dim=0)
img_gts = torch.cat([img_gts, img_gts.flip(0)], dim=0)
# img_lqs: (t, c, h, w)
# img_gt: (c, h, w)
# key: str
return {'lq': img_lqs, 'gt': img_gts, 'key': key}
def __len__(self):
return len(self.keys)
|