Spaces:
Running
Running
import torch | |
from torch import nn as nn | |
from torch.nn import functional as F | |
from basicsr.archs.vgg_arch import VGGFeatureExtractor | |
from basicsr.utils.registry import LOSS_REGISTRY | |
from .loss_util import weighted_loss | |
_reduction_modes = ['none', 'mean', 'sum'] | |
def l1_loss(pred, target): | |
return F.l1_loss(pred, target, reduction='none') | |
def mse_loss(pred, target): | |
return F.mse_loss(pred, target, reduction='none') | |
def charbonnier_loss(pred, target, eps=1e-12): | |
return torch.sqrt((pred - target)**2 + eps) | |
class L1Loss(nn.Module): | |
"""L1 (mean absolute error, MAE) loss. | |
Args: | |
loss_weight (float): Loss weight for L1 loss. Default: 1.0. | |
reduction (str): Specifies the reduction to apply to the output. | |
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. | |
""" | |
def __init__(self, loss_weight=1.0, reduction='mean'): | |
super(L1Loss, self).__init__() | |
if reduction not in ['none', 'mean', 'sum']: | |
raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}') | |
self.loss_weight = loss_weight | |
self.reduction = reduction | |
def forward(self, pred, target, weight=None, **kwargs): | |
""" | |
Args: | |
pred (Tensor): of shape (N, C, H, W). Predicted tensor. | |
target (Tensor): of shape (N, C, H, W). Ground truth tensor. | |
weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None. | |
""" | |
return self.loss_weight * l1_loss(pred, target, weight, reduction=self.reduction) | |
class MSELoss(nn.Module): | |
"""MSE (L2) loss. | |
Args: | |
loss_weight (float): Loss weight for MSE loss. Default: 1.0. | |
reduction (str): Specifies the reduction to apply to the output. | |
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. | |
""" | |
def __init__(self, loss_weight=1.0, reduction='mean'): | |
super(MSELoss, self).__init__() | |
if reduction not in ['none', 'mean', 'sum']: | |
raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}') | |
self.loss_weight = loss_weight | |
self.reduction = reduction | |
def forward(self, pred, target, weight=None, **kwargs): | |
""" | |
Args: | |
pred (Tensor): of shape (N, C, H, W). Predicted tensor. | |
target (Tensor): of shape (N, C, H, W). Ground truth tensor. | |
weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None. | |
""" | |
return self.loss_weight * mse_loss(pred, target, weight, reduction=self.reduction) | |
class CharbonnierLoss(nn.Module): | |
"""Charbonnier loss (one variant of Robust L1Loss, a differentiable | |
variant of L1Loss). | |
Described in "Deep Laplacian Pyramid Networks for Fast and Accurate | |
Super-Resolution". | |
Args: | |
loss_weight (float): Loss weight for L1 loss. Default: 1.0. | |
reduction (str): Specifies the reduction to apply to the output. | |
Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'. | |
eps (float): A value used to control the curvature near zero. Default: 1e-12. | |
""" | |
def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-12): | |
super(CharbonnierLoss, self).__init__() | |
if reduction not in ['none', 'mean', 'sum']: | |
raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: {_reduction_modes}') | |
self.loss_weight = loss_weight | |
self.reduction = reduction | |
self.eps = eps | |
def forward(self, pred, target, weight=None, **kwargs): | |
""" | |
Args: | |
pred (Tensor): of shape (N, C, H, W). Predicted tensor. | |
target (Tensor): of shape (N, C, H, W). Ground truth tensor. | |
weight (Tensor, optional): of shape (N, C, H, W). Element-wise weights. Default: None. | |
""" | |
return self.loss_weight * charbonnier_loss(pred, target, weight, eps=self.eps, reduction=self.reduction) | |
class WeightedTVLoss(L1Loss): | |
"""Weighted TV loss. | |
Args: | |
loss_weight (float): Loss weight. Default: 1.0. | |
""" | |
def __init__(self, loss_weight=1.0, reduction='mean'): | |
if reduction not in ['mean', 'sum']: | |
raise ValueError(f'Unsupported reduction mode: {reduction}. Supported ones are: mean | sum') | |
super(WeightedTVLoss, self).__init__(loss_weight=loss_weight, reduction=reduction) | |
def forward(self, pred, weight=None): | |
if weight is None: | |
y_weight = None | |
x_weight = None | |
else: | |
y_weight = weight[:, :, :-1, :] | |
x_weight = weight[:, :, :, :-1] | |
y_diff = super().forward(pred[:, :, :-1, :], pred[:, :, 1:, :], weight=y_weight) | |
x_diff = super().forward(pred[:, :, :, :-1], pred[:, :, :, 1:], weight=x_weight) | |
loss = x_diff + y_diff | |
return loss | |
class PerceptualLoss(nn.Module): | |
"""Perceptual loss with commonly used style loss. | |
Args: | |
layer_weights (dict): The weight for each layer of vgg feature. | |
Here is an example: {'conv5_4': 1.}, which means the conv5_4 | |
feature layer (before relu5_4) will be extracted with weight | |
1.0 in calculating losses. | |
vgg_type (str): The type of vgg network used as feature extractor. | |
Default: 'vgg19'. | |
use_input_norm (bool): If True, normalize the input image in vgg. | |
Default: True. | |
range_norm (bool): If True, norm images with range [-1, 1] to [0, 1]. | |
Default: False. | |
perceptual_weight (float): If `perceptual_weight > 0`, the perceptual | |
loss will be calculated and the loss will multiplied by the | |
weight. Default: 1.0. | |
style_weight (float): If `style_weight > 0`, the style loss will be | |
calculated and the loss will multiplied by the weight. | |
Default: 0. | |
criterion (str): Criterion used for perceptual loss. Default: 'l1'. | |
""" | |
def __init__(self, | |
layer_weights, | |
vgg_type='vgg19', | |
use_input_norm=True, | |
range_norm=False, | |
perceptual_weight=1.0, | |
style_weight=0., | |
criterion='l1'): | |
super(PerceptualLoss, self).__init__() | |
self.perceptual_weight = perceptual_weight | |
self.style_weight = style_weight | |
self.layer_weights = layer_weights | |
self.vgg = VGGFeatureExtractor( | |
layer_name_list=list(layer_weights.keys()), | |
vgg_type=vgg_type, | |
use_input_norm=use_input_norm, | |
range_norm=range_norm) | |
self.criterion_type = criterion | |
if self.criterion_type == 'l1': | |
self.criterion = torch.nn.L1Loss() | |
elif self.criterion_type == 'l2': | |
self.criterion = torch.nn.L2loss() | |
elif self.criterion_type == 'fro': | |
self.criterion = None | |
else: | |
raise NotImplementedError(f'{criterion} criterion has not been supported.') | |
def forward(self, x, gt): | |
"""Forward function. | |
Args: | |
x (Tensor): Input tensor with shape (n, c, h, w). | |
gt (Tensor): Ground-truth tensor with shape (n, c, h, w). | |
Returns: | |
Tensor: Forward results. | |
""" | |
# extract vgg features | |
x_features = self.vgg(x) | |
gt_features = self.vgg(gt.detach()) | |
# calculate perceptual loss | |
if self.perceptual_weight > 0: | |
percep_loss = 0 | |
for k in x_features.keys(): | |
if self.criterion_type == 'fro': | |
percep_loss += torch.norm(x_features[k] - gt_features[k], p='fro') * self.layer_weights[k] | |
else: | |
percep_loss += self.criterion(x_features[k], gt_features[k]) * self.layer_weights[k] | |
percep_loss *= self.perceptual_weight | |
else: | |
percep_loss = None | |
# calculate style loss | |
if self.style_weight > 0: | |
style_loss = 0 | |
for k in x_features.keys(): | |
if self.criterion_type == 'fro': | |
style_loss += torch.norm( | |
self._gram_mat(x_features[k]) - self._gram_mat(gt_features[k]), p='fro') * self.layer_weights[k] | |
else: | |
style_loss += self.criterion(self._gram_mat(x_features[k]), self._gram_mat( | |
gt_features[k])) * self.layer_weights[k] | |
style_loss *= self.style_weight | |
else: | |
style_loss = None | |
return percep_loss, style_loss | |
def _gram_mat(self, x): | |
"""Calculate Gram matrix. | |
Args: | |
x (torch.Tensor): Tensor with shape of (n, c, h, w). | |
Returns: | |
torch.Tensor: Gram matrix. | |
""" | |
n, c, h, w = x.size() | |
features = x.view(n, c, w * h) | |
features_t = features.transpose(1, 2) | |
gram = features.bmm(features_t) / (c * h * w) | |
return gram | |