Spaces:
Running
Running
import math | |
import numpy as np | |
import torch | |
from torch import nn, Tensor | |
import torch.nn.functional as F | |
from typing import Optional, List | |
from basicsr.archs.vqgan_arch import * | |
from basicsr.utils import get_root_logger | |
from basicsr.utils.registry import ARCH_REGISTRY | |
def calc_mean_std(feat, eps=1e-5): | |
"""Calculate mean and std for adaptive_instance_normalization. | |
Args: | |
feat (Tensor): 4D tensor. | |
eps (float): A small value added to the variance to avoid | |
divide-by-zero. Default: 1e-5. | |
""" | |
size = feat.size() | |
assert len(size) == 4, 'The input feature should be 4D tensor.' | |
b, c = size[:2] | |
feat_var = feat.view(b, c, -1).var(dim=2) + eps | |
feat_std = feat_var.sqrt().view(b, c, 1, 1) | |
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1) | |
return feat_mean, feat_std | |
def adaptive_instance_normalization(content_feat, style_feat): | |
"""Adaptive instance normalization. | |
Adjust the reference features to have the similar color and illuminations | |
as those in the degradate features. | |
Args: | |
content_feat (Tensor): The reference feature. | |
style_feat (Tensor): The degradate features. | |
""" | |
size = content_feat.size() | |
style_mean, style_std = calc_mean_std(style_feat) | |
content_mean, content_std = calc_mean_std(content_feat) | |
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) | |
return normalized_feat * style_std.expand(size) + style_mean.expand(size) | |
class PositionEmbeddingSine(nn.Module): | |
""" | |
This is a more standard version of the position embedding, very similar to the one | |
used by the Attention is all you need paper, generalized to work on images. | |
""" | |
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): | |
super().__init__() | |
self.num_pos_feats = num_pos_feats | |
self.temperature = temperature | |
self.normalize = normalize | |
if scale is not None and normalize is False: | |
raise ValueError("normalize should be True if scale is passed") | |
if scale is None: | |
scale = 2 * math.pi | |
self.scale = scale | |
def forward(self, x, mask=None): | |
if mask is None: | |
mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) | |
not_mask = ~mask | |
y_embed = not_mask.cumsum(1, dtype=torch.float32) | |
x_embed = not_mask.cumsum(2, dtype=torch.float32) | |
if self.normalize: | |
eps = 1e-6 | |
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale | |
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale | |
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) | |
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) | |
pos_x = x_embed[:, :, :, None] / dim_t | |
pos_y = y_embed[:, :, :, None] / dim_t | |
pos_x = torch.stack( | |
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 | |
).flatten(3) | |
pos_y = torch.stack( | |
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 | |
).flatten(3) | |
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | |
return pos | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string""" | |
if activation == "relu": | |
return F.relu | |
if activation == "gelu": | |
return F.gelu | |
if activation == "glu": | |
return F.glu | |
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") | |
class TransformerSALayer(nn.Module): | |
def __init__(self, embed_dim, nhead=8, dim_mlp=2048, dropout=0.0, activation="gelu"): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(embed_dim, nhead, dropout=dropout) | |
# Implementation of Feedforward model - MLP | |
self.linear1 = nn.Linear(embed_dim, dim_mlp) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_mlp, embed_dim) | |
self.norm1 = nn.LayerNorm(embed_dim) | |
self.norm2 = nn.LayerNorm(embed_dim) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward(self, tgt, | |
tgt_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
# self attention | |
tgt2 = self.norm1(tgt) | |
q = k = self.with_pos_embed(tgt2, query_pos) | |
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
# ffn | |
tgt2 = self.norm2(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout2(tgt2) | |
return tgt | |
class Fuse_sft_block(nn.Module): | |
def __init__(self, in_ch, out_ch): | |
super().__init__() | |
self.encode_enc = ResBlock(2*in_ch, out_ch) | |
self.scale = nn.Sequential( | |
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), | |
nn.LeakyReLU(0.2, True), | |
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) | |
self.shift = nn.Sequential( | |
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), | |
nn.LeakyReLU(0.2, True), | |
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1)) | |
def forward(self, enc_feat, dec_feat, w=1): | |
enc_feat = self.encode_enc(torch.cat([enc_feat, dec_feat], dim=1)) | |
scale = self.scale(enc_feat) | |
shift = self.shift(enc_feat) | |
residual = w * (dec_feat * scale + shift) | |
out = dec_feat + residual | |
return out | |
class CodeFormer(VQAutoEncoder): | |
def __init__(self, dim_embd=512, n_head=8, n_layers=9, | |
codebook_size=1024, latent_size=256, | |
connect_list=['32', '64', '128', '256'], | |
fix_modules=['quantize','generator']): | |
super(CodeFormer, self).__init__(512, 64, [1, 2, 2, 4, 4, 8], 'nearest',2, [16], codebook_size) | |
if fix_modules is not None: | |
for module in fix_modules: | |
for param in getattr(self, module).parameters(): | |
param.requires_grad = False | |
self.connect_list = connect_list | |
self.n_layers = n_layers | |
self.dim_embd = dim_embd | |
self.dim_mlp = dim_embd*2 | |
self.position_emb = nn.Parameter(torch.zeros(latent_size, self.dim_embd)) | |
self.feat_emb = nn.Linear(256, self.dim_embd) | |
# transformer | |
self.ft_layers = nn.Sequential(*[TransformerSALayer(embed_dim=dim_embd, nhead=n_head, dim_mlp=self.dim_mlp, dropout=0.0) | |
for _ in range(self.n_layers)]) | |
# logits_predict head | |
self.idx_pred_layer = nn.Sequential( | |
nn.LayerNorm(dim_embd), | |
nn.Linear(dim_embd, codebook_size, bias=False)) | |
self.channels = { | |
'16': 512, | |
'32': 256, | |
'64': 256, | |
'128': 128, | |
'256': 128, | |
'512': 64, | |
} | |
# after second residual block for > 16, before attn layer for ==16 | |
self.fuse_encoder_block = {'512':2, '256':5, '128':8, '64':11, '32':14, '16':18} | |
# after first residual block for > 16, before attn layer for ==16 | |
self.fuse_generator_block = {'16':6, '32': 9, '64':12, '128':15, '256':18, '512':21} | |
# fuse_convs_dict | |
self.fuse_convs_dict = nn.ModuleDict() | |
for f_size in self.connect_list: | |
in_ch = self.channels[f_size] | |
self.fuse_convs_dict[f_size] = Fuse_sft_block(in_ch, in_ch) | |
def _init_weights(self, module): | |
if isinstance(module, (nn.Linear, nn.Embedding)): | |
module.weight.data.normal_(mean=0.0, std=0.02) | |
if isinstance(module, nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
def forward(self, x, w=0, detach_16=True, code_only=False, adain=False): | |
# ################### Encoder ##################### | |
enc_feat_dict = {} | |
out_list = [self.fuse_encoder_block[f_size] for f_size in self.connect_list] | |
for i, block in enumerate(self.encoder.blocks): | |
x = block(x) | |
if i in out_list: | |
enc_feat_dict[str(x.shape[-1])] = x.clone() | |
lq_feat = x | |
# ################# Transformer ################### | |
# quant_feat, codebook_loss, quant_stats = self.quantize(lq_feat) | |
pos_emb = self.position_emb.unsqueeze(1).repeat(1,x.shape[0],1) | |
# BCHW -> BC(HW) -> (HW)BC | |
feat_emb = self.feat_emb(lq_feat.flatten(2).permute(2,0,1)) | |
query_emb = feat_emb | |
# Transformer encoder | |
for layer in self.ft_layers: | |
query_emb = layer(query_emb, query_pos=pos_emb) | |
# output logits | |
logits = self.idx_pred_layer(query_emb) # (hw)bn | |
logits = logits.permute(1,0,2) # (hw)bn -> b(hw)n | |
if code_only: # for training stage II | |
# logits doesn't need softmax before cross_entropy loss | |
return logits, lq_feat | |
# ################# Quantization ################### | |
# if self.training: | |
# quant_feat = torch.einsum('btn,nc->btc', [soft_one_hot, self.quantize.embedding.weight]) | |
# # b(hw)c -> bc(hw) -> bchw | |
# quant_feat = quant_feat.permute(0,2,1).view(lq_feat.shape) | |
# ------------ | |
soft_one_hot = F.softmax(logits, dim=2) | |
_, top_idx = torch.topk(soft_one_hot, 1, dim=2) | |
quant_feat = self.quantize.get_codebook_feat(top_idx, shape=[x.shape[0],16,16,256]) | |
# preserve gradients | |
# quant_feat = lq_feat + (quant_feat - lq_feat).detach() | |
if detach_16: | |
quant_feat = quant_feat.detach() # for training stage III | |
if adain: | |
quant_feat = adaptive_instance_normalization(quant_feat, lq_feat) | |
# ################## Generator #################### | |
x = quant_feat | |
fuse_list = [self.fuse_generator_block[f_size] for f_size in self.connect_list] | |
for i, block in enumerate(self.generator.blocks): | |
x = block(x) | |
if i in fuse_list: # fuse after i-th block | |
f_size = str(x.shape[-1]) | |
if w>0: | |
x = self.fuse_convs_dict[f_size](enc_feat_dict[f_size].detach(), x, w) | |
out = x | |
# logits doesn't need softmax before cross_entropy loss | |
return out, logits, lq_feat |