Spaces:
Running
Running
File size: 5,982 Bytes
0ab4532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
from abc import ABC
import torch
import torch.nn.functional as F
from modules.diffusion_transformer import DiT
from modules.commons import sequence_mask
from tqdm import tqdm
class BASECFM(torch.nn.Module, ABC):
def __init__(
self,
args,
):
super().__init__()
self.sigma_min = 1e-6
self.estimator = None
self.in_channels = args.DiT.in_channels
self.criterion = torch.nn.MSELoss() if args.reg_loss_type == "l2" else torch.nn.L1Loss()
if hasattr(args.DiT, 'zero_prompt_speech_token'):
self.zero_prompt_speech_token = args.DiT.zero_prompt_speech_token
else:
self.zero_prompt_speech_token = False
@torch.inference_mode()
def inference(self, mu, x_lens, prompt, style, f0, n_timesteps, temperature=1.0, inference_cfg_rate=0.5):
"""Forward diffusion
Args:
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
n_timesteps (int): number of diffusion steps
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
Returns:
sample: generated mel-spectrogram
shape: (batch_size, n_feats, mel_timesteps)
"""
B, T = mu.size(0), mu.size(1)
z = torch.randn([B, self.in_channels, T], device=mu.device) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
return self.solve_euler(z, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate)
def solve_euler(self, x, x_lens, prompt, mu, style, f0, t_span, inference_cfg_rate=0.5):
"""
Fixed euler solver for ODEs.
Args:
x (torch.Tensor): random noise
t_span (torch.Tensor): n_timesteps interpolated
shape: (n_timesteps + 1,)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): output_mask
shape: (batch_size, 1, mel_timesteps)
spks (torch.Tensor, optional): speaker ids. Defaults to None.
shape: (batch_size, spk_emb_dim)
cond: Not used but kept for future purposes
"""
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag
sol = []
# apply prompt
prompt_len = prompt.size(-1)
prompt_x = torch.zeros_like(x)
prompt_x[..., :prompt_len] = prompt[..., :prompt_len]
x[..., :prompt_len] = 0
if self.zero_prompt_speech_token:
mu[..., :prompt_len] = 0
for step in tqdm(range(1, len(t_span))):
dphi_dt = self.estimator(x, prompt_x, x_lens, t.unsqueeze(0), style, mu, f0)
# Classifier-Free Guidance inference introduced in VoiceBox
if inference_cfg_rate > 0:
cfg_dphi_dt = self.estimator(
x, torch.zeros_like(prompt_x), x_lens, t.unsqueeze(0),
torch.zeros_like(style),
torch.zeros_like(mu), None
)
dphi_dt = ((1.0 + inference_cfg_rate) * dphi_dt -
inference_cfg_rate * cfg_dphi_dt)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
x[:, :, :prompt_len] = 0
return sol[-1]
def forward(self, x1, x_lens, prompt_lens, mu, style, f0=None):
"""Computes diffusion loss
Args:
x1 (torch.Tensor): Target
shape: (batch_size, n_feats, mel_timesteps)
mask (torch.Tensor): target mask
shape: (batch_size, 1, mel_timesteps)
mu (torch.Tensor): output of encoder
shape: (batch_size, n_feats, mel_timesteps)
spks (torch.Tensor, optional): speaker embedding. Defaults to None.
shape: (batch_size, spk_emb_dim)
Returns:
loss: conditional flow matching loss
y: conditional flow
shape: (batch_size, n_feats, mel_timesteps)
"""
b, _, t = x1.shape
# random timestep
t = torch.rand([b, 1, 1], device=mu.device, dtype=x1.dtype)
# sample noise p(x_0)
z = torch.randn_like(x1)
y = (1 - (1 - self.sigma_min) * t) * z + t * x1
u = x1 - (1 - self.sigma_min) * z
prompt = torch.zeros_like(x1)
for bib in range(b):
prompt[bib, :, :prompt_lens[bib]] = x1[bib, :, :prompt_lens[bib]]
# range covered by prompt are set to 0
y[bib, :, :prompt_lens[bib]] = 0
if self.zero_prompt_speech_token:
mu[bib, :, :prompt_lens[bib]] = 0
estimator_out = self.estimator(y, prompt, x_lens, t.squeeze(), style, mu, f0)
loss = 0
for bib in range(b):
loss += self.criterion(estimator_out[bib, :, prompt_lens[bib]:x_lens[bib]], u[bib, :, prompt_lens[bib]:x_lens[bib]])
loss /= b
return loss, y
class CFM(BASECFM):
def __init__(self, args):
super().__init__(
args
)
if args.dit_type == "DiT":
self.estimator = DiT(args)
else:
raise NotImplementedError(f"Unknown diffusion type {args.dit_type}")
|