Spaces:
Running
Running
File size: 16,311 Bytes
52a7f35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import torch
import torchaudio
import librosa
from modules.commons import build_model, load_checkpoint, recursive_munch
import yaml
from hf_utils import load_custom_model_from_hf
import numpy as np
# Загрузка моделей и конфигураций
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Загрузка конфигурации и модели DiT
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf(
"Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml"
)
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']
# Загрузка контрольных точек модели
model, _, _, _ = load_checkpoint(
model, None, dit_checkpoint_path,
load_only_params=True, ignore_modules=[], is_distributed=False
)
for key in model:
model[key].eval()
model[key].to(device)
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Загрузка дополнительной модели CAMPPlus
from modules.campplus.DTDNN import CAMPPlus
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
campplus_model.eval()
campplus_model.to(device)
# Загрузка модели BigVGAN
from modules.bigvgan import bigvgan
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)
# Загрузка модели FAcodec
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
codec_config = yaml.safe_load(open(config_path))
codec_model_params = recursive_munch(codec_config['model_params'])
codec_encoder = build_model(codec_model_params, stage="codec")
ckpt_params = torch.load(ckpt_path, map_location="cpu")
for key in codec_encoder:
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
_ = [codec_encoder[key].eval() for key in codec_encoder]
_ = [codec_encoder[key].to(device) for key in codec_encoder]
# Загрузка модели Whisper
from transformers import AutoFeatureExtractor, WhisperModel
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small"
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
del whisper_model.decoder
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
# Функция для генерации мел-спектрограммы
mel_fn_args = {
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
"win_size": config['preprocess_params']['spect_params']['win_length'],
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": sr,
"fmin": 0,
"fmax": None,
"center": False
}
from modules.audio import mel_spectrogram
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
# Модель с F0 условием
dit_checkpoint_path_f0, dit_config_path_f0 = load_custom_model_from_hf(
"Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
"config_dit_mel_seed_uvit_whisper_base_f0_44k.yml"
)
config_f0 = yaml.safe_load(open(dit_config_path_f0, 'r'))
model_params_f0 = recursive_munch(config_f0['model_params'])
model_f0 = build_model(model_params_f0, stage='DiT')
hop_length_f0 = config_f0['preprocess_params']['spect_params']['hop_length']
sr_f0 = config_f0['preprocess_params']['sr']
# Загрузка контрольных точек модели с F0
model_f0, _, _, _ = load_checkpoint(
model_f0, None, dit_checkpoint_path_f0,
load_only_params=True, ignore_modules=[], is_distributed=False
)
for key in model_f0:
model_f0[key].eval()
model_f0[key].to(device)
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Загрузка F0-экстрактора RMVPE
from modules.rmvpe import RMVPE
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
rmvpe = RMVPE(model_path, is_half=False, device=device)
# Параметры мел-спектрограммы для F0
mel_fn_args_f0 = {
"n_fft": config_f0['preprocess_params']['spect_params']['n_fft'],
"win_size": config_f0['preprocess_params']['spect_params']['win_length'],
"hop_size": config_f0['preprocess_params']['spect_params']['hop_length'],
"num_mels": config_f0['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": sr_f0,
"fmin": 0,
"fmax": None,
"center": False
}
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
# Загрузка модели BigVGAN для 44kHz
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
bigvgan_44k_model.remove_weight_norm()
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
def adjust_f0_semitones(f0_sequence, n_semitones):
factor = 2 ** (n_semitones / 12)
return f0_sequence * factor
def crossfade(chunk1, chunk2, overlap):
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
return chunk2
# Параметры для обработки потоков и чанков
max_context_window = sr // hop_length * 30
overlap_frame_len = 16
overlap_wave_len = overlap_frame_len * hop_length
bitrate = "320k"
@torch.no_grad()
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
"""
Функция для голосового преобразования.
Параметры:
- source (str): Путь к исходному аудио файлу.
- target (str): Путь к целевому аудио файлу (голос, на который нужно преобразовать).
- diffusion_steps (int): Количество шагов диффузии.
- length_adjust (float): Коэффициент регулировки длины.
- inference_cfg_rate (float): Коэффициент CFG для инференса.
- f0_condition (bool): Использовать ли условие F0.
- auto_f0_adjust (bool): Автоматически ли корректировать F0.
- pitch_shift (int): Сдвиг тона в полутонах.
Возвращает:
- tuple: (частота дискретизации, numpy массив аудио данных)
"""
inference_module = model_f0 if f0_condition else model
mel_fn = to_mel_f0 if f0_condition else to_mel
bigvgan_fn = bigvgan_44k_model if f0_condition else bigvgan_model
sr_used = sr_f0 if f0_condition else sr
# Загрузка аудио
source_audio, _ = librosa.load(source, sr=sr_used)
ref_audio, _ = librosa.load(target, sr=sr_used)
# Ограничение длины целевого аудио
ref_audio = ref_audio[:sr_used * 25]
# Преобразование аудио в тензоры
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
ref_audio = torch.tensor(ref_audio).unsqueeze(0).float().to(device)
# Ресемплирование для Whisper
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr_used, 16000)
converted_waves_16k = torchaudio.functional.resample(source_audio, sr_used, 16000)
# Извлечение признаков с помощью Whisper
if converted_waves_16k.size(-1) <= 16000 * 30:
alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True,
sampling_rate=16000)
alt_input_features = whisper_model._mask_input_features(
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
alt_outputs = whisper_model.encoder(
alt_input_features.to(whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
else:
# Обработка длинного аудио в чанках
overlapping_time = 5 # секунд
S_alt_list = []
buffer = None
traversed_time = 0
while traversed_time < converted_waves_16k.size(-1):
if buffer is None:
chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
else:
chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True,
sampling_rate=16000)
alt_input_features = whisper_model._mask_input_features(
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
alt_outputs = whisper_model.encoder(
alt_input_features.to(whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
S_alt = S_alt[:, :chunk.size(-1) // 320 + 1]
if traversed_time == 0:
S_alt_list.append(S_alt)
else:
S_alt_list.append(S_alt[:, 50 * overlapping_time:])
buffer = chunk[:, -16000 * overlapping_time:]
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
S_alt = torch.cat(S_alt_list, dim=1)
# Извлечение признаков из референсного аудио
ori_waves_16k = torchaudio.functional.resample(ref_audio, sr_used, 16000)
ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True)
ori_input_features = whisper_model._mask_input_features(
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
with torch.no_grad():
ori_outputs = whisper_model.encoder(
ori_input_features.to(whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
mel = mel_fn(source_audio.to(device).float())
mel2 = mel_fn(ref_audio.to(device).float())
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
# Извлечение стиля с помощью CAMPPlus
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
style2 = campplus_model(feat2.unsqueeze(0))
if f0_condition:
# Извлечение F0 с помощью RMVPE
F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.5)
F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.5)
F0_ori = torch.from_numpy(F0_ori).to(device)[None]
F0_alt = torch.from_numpy(F0_alt).to(device)[None]
voiced_F0_ori = F0_ori[F0_ori > 1]
voiced_F0_alt = F0_alt[F0_alt > 1]
log_f0_alt = torch.log(F0_alt + 1e-5)
voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
median_log_f0_ori = torch.median(voiced_log_f0_ori)
median_log_f0_alt = torch.median(voiced_log_f0_alt)
# Корректировка F0
shifted_log_f0_alt = log_f0_alt.clone()
if auto_f0_adjust:
shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
shifted_f0_alt = torch.exp(shifted_log_f0_alt)
if pitch_shift != 0:
shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
else:
F0_ori = None
F0_alt = None
shifted_f0_alt = None
# Регулировка длины
cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(
S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt
)
prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(
S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori
)
max_source_window = max_context_window - mel2.size(2)
processed_frames = 0
generated_wave_chunks = []
# Генерация аудио по частям
while processed_frames < cond.size(1):
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
is_last_chunk = processed_frames + max_source_window >= cond.size(1)
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
vc_target = inference_module.cfm.inference(
cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
mel2, style2, None, diffusion_steps,
inference_cfg_rate=inference_cfg_rate
)
vc_target = vc_target[:, :, mel2.size(-1):]
vc_wave = bigvgan_fn(vc_target)[0]
if processed_frames == 0:
if is_last_chunk:
output_wave = vc_wave[0].cpu().numpy()
generated_wave_chunks.append(output_wave)
break
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
generated_wave_chunks.append(output_wave)
previous_chunk = vc_wave[0, -overlap_wave_len:]
processed_frames += vc_target.size(2) - overlap_frame_len
elif is_last_chunk:
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
generated_wave_chunks.append(output_wave)
processed_frames += vc_target.size(2) - overlap_frame_len
break
else:
output_wave = crossfade(
previous_chunk.cpu().numpy(),
vc_wave[0, :-overlap_wave_len].cpu().numpy(),
overlap_wave_len
)
generated_wave_chunks.append(output_wave)
previous_chunk = vc_wave[0, -overlap_wave_len:]
processed_frames += vc_target.size(2) - overlap_frame_len
# Объединение всех чанков в одно аудио
full_output_wave = np.concatenate(generated_wave_chunks)
# Нормализация аудио
max_val = np.max(np.abs(full_output_wave))
if max_val > 1.0:
full_output_wave = full_output_wave / max_val
return sr_used, full_output_wave
|