File size: 16,311 Bytes
52a7f35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import torch
import torchaudio
import librosa
from modules.commons import build_model, load_checkpoint, recursive_munch
import yaml
from hf_utils import load_custom_model_from_hf
import numpy as np

# Загрузка моделей и конфигураций
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Загрузка конфигурации и модели DiT
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf(
    "Plachta/Seed-VC",
    "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
    "config_dit_mel_seed_uvit_whisper_small_wavenet.yml"
)

config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']

# Загрузка контрольных точек модели
model, _, _, _ = load_checkpoint(
    model, None, dit_checkpoint_path,
    load_only_params=True, ignore_modules=[], is_distributed=False
)
for key in model:
    model[key].eval()
    model[key].to(device)
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)

# Загрузка дополнительной модели CAMPPlus
from modules.campplus.DTDNN import CAMPPlus

campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
campplus_model.eval()
campplus_model.to(device)

# Загрузка модели BigVGAN
from modules.bigvgan import bigvgan

bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)

# Загрузка модели FAcodec
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')

codec_config = yaml.safe_load(open(config_path))
codec_model_params = recursive_munch(codec_config['model_params'])
codec_encoder = build_model(codec_model_params, stage="codec")

ckpt_params = torch.load(ckpt_path, map_location="cpu")

for key in codec_encoder:
    codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
_ = [codec_encoder[key].eval() for key in codec_encoder]
_ = [codec_encoder[key].to(device) for key in codec_encoder]

# Загрузка модели Whisper
from transformers import AutoFeatureExtractor, WhisperModel

whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small"
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
del whisper_model.decoder
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)

# Функция для генерации мел-спектрограммы
mel_fn_args = {
    "n_fft": config['preprocess_params']['spect_params']['n_fft'],
    "win_size": config['preprocess_params']['spect_params']['win_length'],
    "hop_size": config['preprocess_params']['spect_params']['hop_length'],
    "num_mels": config['preprocess_params']['spect_params']['n_mels'],
    "sampling_rate": sr,
    "fmin": 0,
    "fmax": None,
    "center": False
}
from modules.audio import mel_spectrogram

to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)

# Модель с F0 условием
dit_checkpoint_path_f0, dit_config_path_f0 = load_custom_model_from_hf(
    "Plachta/Seed-VC",
    "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
    "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml"
)

config_f0 = yaml.safe_load(open(dit_config_path_f0, 'r'))
model_params_f0 = recursive_munch(config_f0['model_params'])
model_f0 = build_model(model_params_f0, stage='DiT')
hop_length_f0 = config_f0['preprocess_params']['spect_params']['hop_length']
sr_f0 = config_f0['preprocess_params']['sr']

# Загрузка контрольных точек модели с F0
model_f0, _, _, _ = load_checkpoint(
    model_f0, None, dit_checkpoint_path_f0,
    load_only_params=True, ignore_modules=[], is_distributed=False
)
for key in model_f0:
    model_f0[key].eval()
    model_f0[key].to(device)
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)

# Загрузка F0-экстрактора RMVPE
from modules.rmvpe import RMVPE

model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
rmvpe = RMVPE(model_path, is_half=False, device=device)

# Параметры мел-спектрограммы для F0
mel_fn_args_f0 = {
    "n_fft": config_f0['preprocess_params']['spect_params']['n_fft'],
    "win_size": config_f0['preprocess_params']['spect_params']['win_length'],
    "hop_size": config_f0['preprocess_params']['spect_params']['hop_length'],
    "num_mels": config_f0['preprocess_params']['spect_params']['n_mels'],
    "sampling_rate": sr_f0,
    "fmin": 0,
    "fmax": None,
    "center": False
}
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)

# Загрузка модели BigVGAN для 44kHz
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
bigvgan_44k_model.remove_weight_norm()
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)

def adjust_f0_semitones(f0_sequence, n_semitones):
    factor = 2 ** (n_semitones / 12)
    return f0_sequence * factor

def crossfade(chunk1, chunk2, overlap):
    fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
    fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
    chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
    return chunk2

# Параметры для обработки потоков и чанков
max_context_window = sr // hop_length * 30
overlap_frame_len = 16
overlap_wave_len = overlap_frame_len * hop_length
bitrate = "320k"

@torch.no_grad()
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
    """
    Функция для голосового преобразования.

    Параметры:
    - source (str): Путь к исходному аудио файлу.
    - target (str): Путь к целевому аудио файлу (голос, на который нужно преобразовать).
    - diffusion_steps (int): Количество шагов диффузии.
    - length_adjust (float): Коэффициент регулировки длины.
    - inference_cfg_rate (float): Коэффициент CFG для инференса.
    - f0_condition (bool): Использовать ли условие F0.
    - auto_f0_adjust (bool): Автоматически ли корректировать F0.
    - pitch_shift (int): Сдвиг тона в полутонах.

    Возвращает:
    - tuple: (частота дискретизации, numpy массив аудио данных)
    """
    inference_module = model_f0 if f0_condition else model
    mel_fn = to_mel_f0 if f0_condition else to_mel
    bigvgan_fn = bigvgan_44k_model if f0_condition else bigvgan_model
    sr_used = sr_f0 if f0_condition else sr

    # Загрузка аудио
    source_audio, _ = librosa.load(source, sr=sr_used)
    ref_audio, _ = librosa.load(target, sr=sr_used)

    # Ограничение длины целевого аудио
    ref_audio = ref_audio[:sr_used * 25]

    # Преобразование аудио в тензоры
    source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
    ref_audio = torch.tensor(ref_audio).unsqueeze(0).float().to(device)

    # Ресемплирование для Whisper
    ref_waves_16k = torchaudio.functional.resample(ref_audio, sr_used, 16000)
    converted_waves_16k = torchaudio.functional.resample(source_audio, sr_used, 16000)

    # Извлечение признаков с помощью Whisper
    if converted_waves_16k.size(-1) <= 16000 * 30:
        alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()],
                                               return_tensors="pt",
                                               return_attention_mask=True,
                                               sampling_rate=16000)
        alt_input_features = whisper_model._mask_input_features(
            alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
        alt_outputs = whisper_model.encoder(
            alt_input_features.to(whisper_model.encoder.dtype),
            head_mask=None,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
        )
        S_alt = alt_outputs.last_hidden_state.to(torch.float32)
        S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
    else:
        # Обработка длинного аудио в чанках
        overlapping_time = 5  # секунд
        S_alt_list = []
        buffer = None
        traversed_time = 0
        while traversed_time < converted_waves_16k.size(-1):
            if buffer is None:
                chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
            else:
                chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
            alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()],
                                                   return_tensors="pt",
                                                   return_attention_mask=True,
                                                   sampling_rate=16000)
            alt_input_features = whisper_model._mask_input_features(
                alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
            alt_outputs = whisper_model.encoder(
                alt_input_features.to(whisper_model.encoder.dtype),
                head_mask=None,
                output_attentions=False,
                output_hidden_states=False,
                return_dict=True,
            )
            S_alt = alt_outputs.last_hidden_state.to(torch.float32)
            S_alt = S_alt[:, :chunk.size(-1) // 320 + 1]
            if traversed_time == 0:
                S_alt_list.append(S_alt)
            else:
                S_alt_list.append(S_alt[:, 50 * overlapping_time:])
            buffer = chunk[:, -16000 * overlapping_time:]
            traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
        S_alt = torch.cat(S_alt_list, dim=1)

    # Извлечение признаков из референсного аудио
    ori_waves_16k = torchaudio.functional.resample(ref_audio, sr_used, 16000)
    ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()],
                                           return_tensors="pt",
                                           return_attention_mask=True)
    ori_input_features = whisper_model._mask_input_features(
        ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
    with torch.no_grad():
        ori_outputs = whisper_model.encoder(
            ori_input_features.to(whisper_model.encoder.dtype),
            head_mask=None,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
        )
    S_ori = ori_outputs.last_hidden_state.to(torch.float32)
    S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]

    mel = mel_fn(source_audio.to(device).float())
    mel2 = mel_fn(ref_audio.to(device).float())

    target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
    target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)

    # Извлечение стиля с помощью CAMPPlus
    feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
                                              num_mel_bins=80,
                                              dither=0,
                                              sample_frequency=16000)
    feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
    style2 = campplus_model(feat2.unsqueeze(0))

    if f0_condition:
        # Извлечение F0 с помощью RMVPE
        F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.5)
        F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.5)

        F0_ori = torch.from_numpy(F0_ori).to(device)[None]
        F0_alt = torch.from_numpy(F0_alt).to(device)[None]

        voiced_F0_ori = F0_ori[F0_ori > 1]
        voiced_F0_alt = F0_alt[F0_alt > 1]

        log_f0_alt = torch.log(F0_alt + 1e-5)
        voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
        voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
        median_log_f0_ori = torch.median(voiced_log_f0_ori)
        median_log_f0_alt = torch.median(voiced_log_f0_alt)

        # Корректировка F0
        shifted_log_f0_alt = log_f0_alt.clone()
        if auto_f0_adjust:
            shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
        shifted_f0_alt = torch.exp(shifted_log_f0_alt)
        if pitch_shift != 0:
            shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
    else:
        F0_ori = None
        F0_alt = None
        shifted_f0_alt = None

    # Регулировка длины
    cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(
        S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt
    )
    prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(
        S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori
    )

    max_source_window = max_context_window - mel2.size(2)
    processed_frames = 0
    generated_wave_chunks = []

    # Генерация аудио по частям
    while processed_frames < cond.size(1):
        chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
        is_last_chunk = processed_frames + max_source_window >= cond.size(1)
        cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
        vc_target = inference_module.cfm.inference(
            cat_condition,
            torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
            mel2, style2, None, diffusion_steps,
            inference_cfg_rate=inference_cfg_rate
        )
        vc_target = vc_target[:, :, mel2.size(-1):]
        vc_wave = bigvgan_fn(vc_target)[0]
        if processed_frames == 0:
            if is_last_chunk:
                output_wave = vc_wave[0].cpu().numpy()
                generated_wave_chunks.append(output_wave)
                break
            output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
            generated_wave_chunks.append(output_wave)
            previous_chunk = vc_wave[0, -overlap_wave_len:]
            processed_frames += vc_target.size(2) - overlap_frame_len
        elif is_last_chunk:
            output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
            generated_wave_chunks.append(output_wave)
            processed_frames += vc_target.size(2) - overlap_frame_len
            break
        else:
            output_wave = crossfade(
                previous_chunk.cpu().numpy(),
                vc_wave[0, :-overlap_wave_len].cpu().numpy(),
                overlap_wave_len
            )
            generated_wave_chunks.append(output_wave)
            previous_chunk = vc_wave[0, -overlap_wave_len:]
            processed_frames += vc_target.size(2) - overlap_frame_len

    # Объединение всех чанков в одно аудио
    full_output_wave = np.concatenate(generated_wave_chunks)

    # Нормализация аудио
    max_val = np.max(np.abs(full_output_wave))
    if max_val > 1.0:
        full_output_wave = full_output_wave / max_val

    return sr_used, full_output_wave