Spaces:
Running
Running
File size: 15,222 Bytes
6c343a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import os
import time
import torch
from collections import OrderedDict
from copy import deepcopy
from torch.nn.parallel import DataParallel, DistributedDataParallel
from basicsr.models import lr_scheduler as lr_scheduler
from basicsr.utils import get_root_logger
from basicsr.utils.dist_util import master_only
class BaseModel():
"""Base model."""
def __init__(self, opt):
self.opt = opt
self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu')
self.is_train = opt['is_train']
self.schedulers = []
self.optimizers = []
def feed_data(self, data):
pass
def optimize_parameters(self):
pass
def get_current_visuals(self):
pass
def save(self, epoch, current_iter):
"""Save networks and training state."""
pass
def validation(self, dataloader, current_iter, tb_logger, save_img=False):
"""Validation function.
Args:
dataloader (torch.utils.data.DataLoader): Validation dataloader.
current_iter (int): Current iteration.
tb_logger (tensorboard logger): Tensorboard logger.
save_img (bool): Whether to save images. Default: False.
"""
if self.opt['dist']:
self.dist_validation(dataloader, current_iter, tb_logger, save_img)
else:
self.nondist_validation(dataloader, current_iter, tb_logger, save_img)
def _initialize_best_metric_results(self, dataset_name):
"""Initialize the best metric results dict for recording the best metric value and iteration."""
if hasattr(self, 'best_metric_results') and dataset_name in self.best_metric_results:
return
elif not hasattr(self, 'best_metric_results'):
self.best_metric_results = dict()
# add a dataset record
record = dict()
for metric, content in self.opt['val']['metrics'].items():
better = content.get('better', 'higher')
init_val = float('-inf') if better == 'higher' else float('inf')
record[metric] = dict(better=better, val=init_val, iter=-1)
self.best_metric_results[dataset_name] = record
def _update_best_metric_result(self, dataset_name, metric, val, current_iter):
if self.best_metric_results[dataset_name][metric]['better'] == 'higher':
if val >= self.best_metric_results[dataset_name][metric]['val']:
self.best_metric_results[dataset_name][metric]['val'] = val
self.best_metric_results[dataset_name][metric]['iter'] = current_iter
else:
if val <= self.best_metric_results[dataset_name][metric]['val']:
self.best_metric_results[dataset_name][metric]['val'] = val
self.best_metric_results[dataset_name][metric]['iter'] = current_iter
def model_ema(self, decay=0.999):
net_g = self.get_bare_model(self.net_g)
net_g_params = dict(net_g.named_parameters())
net_g_ema_params = dict(self.net_g_ema.named_parameters())
for k in net_g_ema_params.keys():
net_g_ema_params[k].data.mul_(decay).add_(net_g_params[k].data, alpha=1 - decay)
def get_current_log(self):
return self.log_dict
def model_to_device(self, net):
"""Model to device. It also warps models with DistributedDataParallel
or DataParallel.
Args:
net (nn.Module)
"""
net = net.to(self.device)
if self.opt['dist']:
find_unused_parameters = self.opt.get('find_unused_parameters', False)
net = DistributedDataParallel(
net, device_ids=[torch.cuda.current_device()], find_unused_parameters=find_unused_parameters)
elif self.opt['num_gpu'] > 1:
net = DataParallel(net)
return net
def get_optimizer(self, optim_type, params, lr, **kwargs):
if optim_type == 'Adam':
optimizer = torch.optim.Adam(params, lr, **kwargs)
else:
raise NotImplementedError(f'optimizer {optim_type} is not supperted yet.')
return optimizer
def setup_schedulers(self):
"""Set up schedulers."""
train_opt = self.opt['train']
scheduler_type = train_opt['scheduler'].pop('type')
if scheduler_type in ['MultiStepLR', 'MultiStepRestartLR']:
for optimizer in self.optimizers:
self.schedulers.append(lr_scheduler.MultiStepRestartLR(optimizer, **train_opt['scheduler']))
elif scheduler_type == 'CosineAnnealingRestartLR':
for optimizer in self.optimizers:
self.schedulers.append(lr_scheduler.CosineAnnealingRestartLR(optimizer, **train_opt['scheduler']))
else:
raise NotImplementedError(f'Scheduler {scheduler_type} is not implemented yet.')
def get_bare_model(self, net):
"""Get bare model, especially under wrapping with
DistributedDataParallel or DataParallel.
"""
if isinstance(net, (DataParallel, DistributedDataParallel)):
net = net.module
return net
@master_only
def print_network(self, net):
"""Print the str and parameter number of a network.
Args:
net (nn.Module)
"""
if isinstance(net, (DataParallel, DistributedDataParallel)):
net_cls_str = f'{net.__class__.__name__} - {net.module.__class__.__name__}'
else:
net_cls_str = f'{net.__class__.__name__}'
net = self.get_bare_model(net)
net_str = str(net)
net_params = sum(map(lambda x: x.numel(), net.parameters()))
logger = get_root_logger()
logger.info(f'Network: {net_cls_str}, with parameters: {net_params:,d}')
logger.info(net_str)
def _set_lr(self, lr_groups_l):
"""Set learning rate for warm-up.
Args:
lr_groups_l (list): List for lr_groups, each for an optimizer.
"""
for optimizer, lr_groups in zip(self.optimizers, lr_groups_l):
for param_group, lr in zip(optimizer.param_groups, lr_groups):
param_group['lr'] = lr
def _get_init_lr(self):
"""Get the initial lr, which is set by the scheduler.
"""
init_lr_groups_l = []
for optimizer in self.optimizers:
init_lr_groups_l.append([v['initial_lr'] for v in optimizer.param_groups])
return init_lr_groups_l
def update_learning_rate(self, current_iter, warmup_iter=-1):
"""Update learning rate.
Args:
current_iter (int): Current iteration.
warmup_iter (int): Warm-up iter numbers. -1 for no warm-up.
Default: -1.
"""
if current_iter > 1:
for scheduler in self.schedulers:
scheduler.step()
# set up warm-up learning rate
if current_iter < warmup_iter:
# get initial lr for each group
init_lr_g_l = self._get_init_lr()
# modify warming-up learning rates
# currently only support linearly warm up
warm_up_lr_l = []
for init_lr_g in init_lr_g_l:
warm_up_lr_l.append([v / warmup_iter * current_iter for v in init_lr_g])
# set learning rate
self._set_lr(warm_up_lr_l)
def get_current_learning_rate(self):
return [param_group['lr'] for param_group in self.optimizers[0].param_groups]
@master_only
def save_network(self, net, net_label, current_iter, param_key='params'):
"""Save networks.
Args:
net (nn.Module | list[nn.Module]): Network(s) to be saved.
net_label (str): Network label.
current_iter (int): Current iter number.
param_key (str | list[str]): The parameter key(s) to save network.
Default: 'params'.
"""
if current_iter == -1:
current_iter = 'latest'
save_filename = f'{net_label}_{current_iter}.pth'
save_path = os.path.join(self.opt['path']['models'], save_filename)
net = net if isinstance(net, list) else [net]
param_key = param_key if isinstance(param_key, list) else [param_key]
assert len(net) == len(param_key), 'The lengths of net and param_key should be the same.'
save_dict = {}
for net_, param_key_ in zip(net, param_key):
net_ = self.get_bare_model(net_)
state_dict = net_.state_dict()
for key, param in state_dict.items():
if key.startswith('module.'): # remove unnecessary 'module.'
key = key[7:]
state_dict[key] = param.cpu()
save_dict[param_key_] = state_dict
# avoid occasional writing errors
retry = 3
while retry > 0:
try:
torch.save(save_dict, save_path)
except Exception as e:
logger = get_root_logger()
logger.warning(f'Save model error: {e}, remaining retry times: {retry - 1}')
time.sleep(1)
else:
break
finally:
retry -= 1
if retry == 0:
logger.warning(f'Still cannot save {save_path}. Just ignore it.')
# raise IOError(f'Cannot save {save_path}.')
def _print_different_keys_loading(self, crt_net, load_net, strict=True):
"""Print keys with different name or different size when loading models.
1. Print keys with different names.
2. If strict=False, print the same key but with different tensor size.
It also ignore these keys with different sizes (not load).
Args:
crt_net (torch model): Current network.
load_net (dict): Loaded network.
strict (bool): Whether strictly loaded. Default: True.
"""
crt_net = self.get_bare_model(crt_net)
crt_net = crt_net.state_dict()
crt_net_keys = set(crt_net.keys())
load_net_keys = set(load_net.keys())
logger = get_root_logger()
if crt_net_keys != load_net_keys:
logger.warning('Current net - loaded net:')
for v in sorted(list(crt_net_keys - load_net_keys)):
logger.warning(f' {v}')
logger.warning('Loaded net - current net:')
for v in sorted(list(load_net_keys - crt_net_keys)):
logger.warning(f' {v}')
# check the size for the same keys
if not strict:
common_keys = crt_net_keys & load_net_keys
for k in common_keys:
if crt_net[k].size() != load_net[k].size():
logger.warning(f'Size different, ignore [{k}]: crt_net: '
f'{crt_net[k].shape}; load_net: {load_net[k].shape}')
load_net[k + '.ignore'] = load_net.pop(k)
def load_network(self, net, load_path, strict=True, param_key='params'):
"""Load network.
Args:
load_path (str): The path of networks to be loaded.
net (nn.Module): Network.
strict (bool): Whether strictly loaded.
param_key (str): The parameter key of loaded network. If set to
None, use the root 'path'.
Default: 'params'.
"""
logger = get_root_logger()
net = self.get_bare_model(net)
load_net = torch.load(load_path, map_location=lambda storage, loc: storage)
if param_key is not None:
if param_key not in load_net and 'params' in load_net:
param_key = 'params'
logger.info('Loading: params_ema does not exist, use params.')
load_net = load_net[param_key]
logger.info(f'Loading {net.__class__.__name__} model from {load_path}, with param key: [{param_key}].')
# remove unnecessary 'module.'
for k, v in deepcopy(load_net).items():
if k.startswith('module.'):
load_net[k[7:]] = v
load_net.pop(k)
self._print_different_keys_loading(net, load_net, strict)
net.load_state_dict(load_net, strict=strict)
@master_only
def save_training_state(self, epoch, current_iter):
"""Save training states during training, which will be used for
resuming.
Args:
epoch (int): Current epoch.
current_iter (int): Current iteration.
"""
if current_iter != -1:
state = {'epoch': epoch, 'iter': current_iter, 'optimizers': [], 'schedulers': []}
for o in self.optimizers:
state['optimizers'].append(o.state_dict())
for s in self.schedulers:
state['schedulers'].append(s.state_dict())
save_filename = f'{current_iter}.state'
save_path = os.path.join(self.opt['path']['training_states'], save_filename)
# avoid occasional writing errors
retry = 3
while retry > 0:
try:
torch.save(state, save_path)
except Exception as e:
logger = get_root_logger()
logger.warning(f'Save training state error: {e}, remaining retry times: {retry - 1}')
time.sleep(1)
else:
break
finally:
retry -= 1
if retry == 0:
logger.warning(f'Still cannot save {save_path}. Just ignore it.')
# raise IOError(f'Cannot save {save_path}.')
def resume_training(self, resume_state):
"""Reload the optimizers and schedulers for resumed training.
Args:
resume_state (dict): Resume state.
"""
resume_optimizers = resume_state['optimizers']
resume_schedulers = resume_state['schedulers']
assert len(resume_optimizers) == len(self.optimizers), 'Wrong lengths of optimizers'
assert len(resume_schedulers) == len(self.schedulers), 'Wrong lengths of schedulers'
for i, o in enumerate(resume_optimizers):
self.optimizers[i].load_state_dict(o)
for i, s in enumerate(resume_schedulers):
self.schedulers[i].load_state_dict(s)
def reduce_loss_dict(self, loss_dict):
"""reduce loss dict.
In distributed training, it averages the losses among different GPUs .
Args:
loss_dict (OrderedDict): Loss dict.
"""
with torch.no_grad():
if self.opt['dist']:
keys = []
losses = []
for name, value in loss_dict.items():
keys.append(name)
losses.append(value)
losses = torch.stack(losses, 0)
torch.distributed.reduce(losses, dst=0)
if self.opt['rank'] == 0:
losses /= self.opt['world_size']
loss_dict = {key: loss for key, loss in zip(keys, losses)}
log_dict = OrderedDict()
for name, value in loss_dict.items():
log_dict[name] = value.mean().item()
return log_dict
|