mainmainminavoiceclone / inference.py
Uniaff's picture
Update inference.py
054b210 verified
raw
history blame
16.3 kB
import os
import argparse
import subprocess
import platform
import numpy as np
import cv2
import torch
from tqdm import tqdm
from face_detection import FaceAlignment, LandmarksType
from wav2lip_models import Wav2Lip
from face_parsing import init_parser, swap_regions
from esrgan.upsample import upscale, load_sr
from basicsr.utils.download_util import load_file_from_url
import audio
def parse_arguments():
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
parser.add_argument('--checkpoint_path', type=str, default="checkpoints/wav2lip_gan.pth",
help='Name of saved checkpoint to load weights from', required=False)
parser.add_argument('--segmentation_path', type=str, default="checkpoints/face_segmentation.pth",
help='Name of saved checkpoint of segmentation network', required=False)
parser.add_argument('--sr_path', type=str, default='weights/4x_BigFace_v3_Clear.pth',
help='Name of saved checkpoint of super-resolution network', required=False)
parser.add_argument('--face', type=str,
help='Filepath of video/image that contains faces to use', required=True)
parser.add_argument('--audio', type=str,
help='Filepath of video/audio file to use as raw audio source', required=True)
parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.',
default='results/result_voice.mp4')
parser.add_argument('--static', action='store_true',
help='If set, use only first video frame for inference')
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)',
default=25., required=False)
parser.add_argument('--pads', nargs=4, type=int, default=[0, 10, 0, 0],
help='Padding (top, bottom, left, right). Please adjust to include chin at least')
parser.add_argument('--face_det_batch_size', type=int, help='Batch size for face detection', default=32)
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=256)
parser.add_argument('--resize_factor', default=1, type=int,
help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p')
parser.add_argument('--crop', nargs=4, type=int, default=[0, -1, 0, -1],
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. '
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')
parser.add_argument('--box', nargs=4, type=int, default=[-1, -1, -1, -1],
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')
parser.add_argument('--rotate', action='store_true',
help='Sometimes videos taken from a phone can be flipped 90deg. If set, will flip video right by 90deg.'
'Use if you get a flipped result, despite feeding a normal looking video')
parser.add_argument('--nosmooth', action='store_true',
help='Prevent smoothing face detections over a short temporal window')
parser.add_argument('--no_seg', action='store_true',
help='Prevent using face segmentation')
parser.add_argument('--no_sr', action='store_true',
help='Prevent using super resolution')
parser.add_argument('--enhance_face', choices=['gfpgan','codeformer'],
help='Use GFP-GAN or CodeFormer to enhance facial details.')
parser.add_argument('-w', '--fidelity_weight', type=float, default=0.75,
help='Balance the quality and fidelity. Default: 0.75')
parser.add_argument('--save_frames', action='store_true',
help='Save each frame as an image. Use with caution')
parser.add_argument('--gt_path', type=str,
help='Where to store saved ground truth frames', required=False)
parser.add_argument('--pred_path', type=str,
help='Where to store frames produced by algorithm', required=False)
parser.add_argument('--save_as_video', action="store_true", default=False,
help='Whether to save frames as video', required=False)
parser.add_argument('--image_prefix', type=str, default="",
help='Prefix to save frames with', required=False)
args = parser.parse_args()
if os.path.isfile(args.face) and os.path.splitext(args.face)[1].lower() in ['.jpg', '.png', '.jpeg']:
args.static = True
args.img_size = 96
return args
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
window = boxes[max(i - T + 1, 0):i + 1]
boxes[i] = np.mean(window, axis=0)
return boxes
def face_detect(detector, images, args):
predictions = []
batch_size = args.face_det_batch_size
try:
for i in range(0, len(images), batch_size):
batch_images = np.array(images[i:i + batch_size])
predictions.extend(detector.get_detections_for_batch(batch_images))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
batch_size //= 2
print(f'Recovering from OOM error; New batch size: {batch_size}')
return face_detect(detector, images, args)
results = []
pady1, pady2, padx1, padx2 = args.pads
for rect, image in zip(predictions, images):
if rect is None:
continue
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = np.array(results)
if not args.nosmooth and len(boxes) > 0:
boxes = get_smoothened_boxes(boxes, T=5)
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)]
for image, (x1, y1, x2, y2) in zip(images, boxes)]
return results
def datagen(mels, reader, detector, args):
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
for m in mels:
frame_to_save = next(reader, None)
if frame_to_save is None:
reader = read_frames(args.face, args.resize_factor, args.rotate, args.crop)
frame_to_save = next(reader, None)
if frame_to_save is None:
break
face_detect_result = face_detect(detector, [frame_to_save], args)
if len(face_detect_result) > 0: # Check if face detection was successful
face, coords = face_detect_result[0]
face = cv2.resize(face, (args.img_size, args.img_size))
img_batch.append(face)
mel_batch.append(m)
frame_batch.append(frame_to_save)
coords_batch.append(coords)
if len(img_batch) >= args.wav2lip_batch_size:
img_batch_np = np.asarray(img_batch)
mel_batch_np = np.asarray(mel_batch)
img_masked = img_batch_np.copy()
img_masked[:, args.img_size // 2:] = 0
img_batch_np = np.concatenate((img_masked, img_batch_np), axis=3) / 255.0
mel_batch_np = mel_batch_np.reshape(len(mel_batch_np), mel_batch_np.shape[1], mel_batch_np.shape[2], 1)
yield img_batch_np, mel_batch_np, frame_batch, coords_batch
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
if len(img_batch) > 0:
img_batch_np = np.asarray(img_batch)
mel_batch_np = np.asarray(mel_batch)
img_masked = img_batch_np.copy()
img_masked[:, args.img_size // 2:] = 0
img_batch_np = np.concatenate((img_masked, img_batch_np), axis=3) / 255.0
mel_batch_np = mel_batch_np.reshape(len(mel_batch_np), mel_batch_np.shape[1], mel_batch_np.shape[2], 1)
yield img_batch_np, mel_batch_np, frame_batch, coords_batch
def load_checkpoint(checkpoint_path, device):
if device == 'cuda':
checkpoint = torch.load(checkpoint_path)
else:
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
return checkpoint
def load_model(checkpoint_path, device):
model = Wav2Lip()
print(f"Loading checkpoint from: {checkpoint_path}")
checkpoint = load_checkpoint(checkpoint_path, device)
state_dict = checkpoint["state_dict"]
new_state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
model.load_state_dict(new_state_dict)
model = model.to(device)
model.eval()
return model
def read_frames(face_path, resize_factor, rotate, crop):
if os.path.splitext(face_path)[1].lower() in ['.jpg', '.png', '.jpeg']:
face = cv2.imread(face_path)
if resize_factor > 1:
face = cv2.resize(face, (face.shape[1]//resize_factor, face.shape[0]//resize_factor))
if rotate:
face = cv2.rotate(face, cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = crop
if x2 == -1: x2 = face.shape[1]
if y2 == -1: y2 = face.shape[0]
face = face[y1:y2, x1:x2]
while True:
yield face
else:
video_stream = cv2.VideoCapture(face_path)
fps = video_stream.get(cv2.CAP_PROP_FPS)
print('Reading video frames from start...')
while True:
still_reading, frame = video_stream.read()
if not still_reading:
video_stream.release()
break
if resize_factor > 1:
frame = cv2.resize(frame, (frame.shape[1]//resize_factor, frame.shape[0]//resize_factor))
if rotate:
frame = cv2.rotate(frame, cv2.ROTATE_90_CLOCKWISE)
y1, y2, x1, x2 = crop
if x2 == -1: x2 = frame.shape[1]
if y2 == -1: y2 = frame.shape[0]
frame = frame[y1:y2, x1:x2]
yield frame
def main():
args = parse_arguments()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Using {device} for inference.')
# Инициализация моделей вне циклов
detector = FaceAlignment(LandmarksType._2D, flip_input=False, device=device)
if not args.no_seg:
print("Loading segmentation network...")
seg_net = init_parser(args.segmentation_path)
else:
seg_net = None
if not args.no_sr:
print("Loading super resolution model...")
run_params = load_sr(args.sr_path, device, args.enhance_face)
else:
run_params = None
model = load_model(args.checkpoint_path, device)
print("Model loaded")
if not os.path.isfile(args.face):
raise ValueError('--face argument must be a valid path to video/image file')
if not args.audio.endswith('.wav'):
print('Extracting raw audio...')
temp_wav = os.path.join(os.path.dirname(args.outfile), 'temp.wav')
command = f'ffmpeg -y -i "{args.audio}" -strict -2 "{temp_wav}"'
subprocess.call(command, shell=True)
args.audio = temp_wav
wav = audio.load_wav(args.audio, 16000)
mel = audio.melspectrogram(wav)
print(mel.shape)
if np.isnan(mel).any():
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
mel_step_size = 16
fps = args.fps if args.static else None
if not args.static:
video_stream = cv2.VideoCapture(args.face)
fps = video_stream.get(cv2.CAP_PROP_FPS)
video_stream.release()
mel_idx_multiplier = 80.0 / fps
mel_chunks = []
i = 0
while True:
start_idx = int(i * mel_idx_multiplier)
if start_idx + mel_step_size > mel.shape[1]:
mel_chunks.append(mel[:, -mel_step_size:])
break
mel_chunks.append(mel[:, start_idx:start_idx + mel_step_size])
i += 1
print(f"Length of mel chunks: {len(mel_chunks)}")
reader = read_frames(args.face, args.resize_factor, args.rotate, args.crop)
generator = datagen(mel_chunks, reader, detector, args)
if args.save_as_video:
frame_sample = next(reader)
frame_h, frame_w = frame_sample.shape[:2]
# Определяем путь для result.avi в той же директории, что и outfile
result_avi = os.path.join(os.path.dirname(args.outfile), "result.avi")
out = cv2.VideoWriter(result_avi,
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
if args.save_frames:
gt_out = cv2.VideoWriter(os.path.join(os.path.dirname(args.outfile), "gt.avi"), cv2.VideoWriter_fourcc(*'DIVX'), fps, (384, 384))
pred_out = cv2.VideoWriter(os.path.join(os.path.dirname(args.outfile), "pred.avi"), cv2.VideoWriter_fourcc(*'DIVX'), fps, (96, 96))
else:
out = None
gt_out = None
pred_out = None
abs_idx = 0
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(generator,
total=int(np.ceil(len(mel_chunks)/args.wav2lip_batch_size)))):
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
with torch.no_grad():
pred = model(mel_batch, img_batch)
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0
for p, f, c in zip(pred, frames, coords):
y1, y2, x1, x2 = c
if args.save_frames:
if args.save_as_video:
pred_out.write(p.astype(np.uint8))
gt_resized = cv2.resize(f[y1:y2, x1:x2], (384, 384))
gt_out.write(gt_resized)
else:
if args.gt_path and args.pred_path:
os.makedirs(args.gt_path, exist_ok=True)
os.makedirs(args.pred_path, exist_ok=True)
cv2.imwrite(f"{args.gt_path}/{args.image_prefix}{abs_idx}.png", f[y1:y2, x1:x2])
cv2.imwrite(f"{args.pred_path}/{args.image_prefix}{abs_idx}.png", p)
abs_idx += 1
if not args.no_sr:
if args.enhance_face is None:
p = upscale(p, 0, run_params)
elif args.enhance_face == 'codeformer':
p = upscale(p, 2, [run_params, device, args.fidelity_weight])
elif args.enhance_face == 'gfpgan':
p = upscale(p, 1, run_params)
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
if not args.no_seg and seg_net is not None:
p = swap_regions(f[y1:y2, x1:x2], p, seg_net)
f[y1:y2, x1:x2] = p
if out:
out.write(f)
if out:
out.release()
if args.save_as_video:
final_command = f'ffmpeg -y -i "{args.audio}" -i "{result_avi}" -strict -2 -q:v 1 "{args.outfile}"'
subprocess.call(final_command, shell=(platform.system() != 'Windows'))
if args.save_frames and args.save_as_video:
gt_out.release()
pred_out.release()
gt_video_cmd = f'ffmpeg -y -i "{os.path.join(os.path.dirname(args.outfile), "gt.avi")}" -i "{args.audio}" -strict -2 -q:v 1 "{args.gt_path}"'
pred_video_cmd = f'ffmpeg -y -i "{os.path.join(os.path.dirname(args.outfile), "pred.avi")}" -i "{args.audio}" -strict -2 -q:v 1 "{args.pred_path}"'
subprocess.call(gt_video_cmd, shell=(platform.system() != 'Windows'))
subprocess.call(pred_video_cmd, shell=(platform.system() != 'Windows'))
if __name__ == '__main__':
main()