Uniaff's picture
Update seedvc.py
52a7f35 verified
import torch
import torchaudio
import librosa
from modules.commons import build_model, load_checkpoint, recursive_munch
import yaml
from hf_utils import load_custom_model_from_hf
import numpy as np
# Загрузка моделей и конфигураций
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Загрузка конфигурации и модели DiT
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf(
"Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml"
)
config = yaml.safe_load(open(dit_config_path, 'r'))
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, stage='DiT')
hop_length = config['preprocess_params']['spect_params']['hop_length']
sr = config['preprocess_params']['sr']
# Загрузка контрольных точек модели
model, _, _, _ = load_checkpoint(
model, None, dit_checkpoint_path,
load_only_params=True, ignore_modules=[], is_distributed=False
)
for key in model:
model[key].eval()
model[key].to(device)
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Загрузка дополнительной модели CAMPPlus
from modules.campplus.DTDNN import CAMPPlus
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
campplus_model.eval()
campplus_model.to(device)
# Загрузка модели BigVGAN
from modules.bigvgan import bigvgan
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval().to(device)
# Загрузка модели FAcodec
ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml')
codec_config = yaml.safe_load(open(config_path))
codec_model_params = recursive_munch(codec_config['model_params'])
codec_encoder = build_model(codec_model_params, stage="codec")
ckpt_params = torch.load(ckpt_path, map_location="cpu")
for key in codec_encoder:
codec_encoder[key].load_state_dict(ckpt_params[key], strict=False)
_ = [codec_encoder[key].eval() for key in codec_encoder]
_ = [codec_encoder[key].to(device) for key in codec_encoder]
# Загрузка модели Whisper
from transformers import AutoFeatureExtractor, WhisperModel
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small"
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
del whisper_model.decoder
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
# Функция для генерации мел-спектрограммы
mel_fn_args = {
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
"win_size": config['preprocess_params']['spect_params']['win_length'],
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": sr,
"fmin": 0,
"fmax": None,
"center": False
}
from modules.audio import mel_spectrogram
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
# Модель с F0 условием
dit_checkpoint_path_f0, dit_config_path_f0 = load_custom_model_from_hf(
"Plachta/Seed-VC",
"DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
"config_dit_mel_seed_uvit_whisper_base_f0_44k.yml"
)
config_f0 = yaml.safe_load(open(dit_config_path_f0, 'r'))
model_params_f0 = recursive_munch(config_f0['model_params'])
model_f0 = build_model(model_params_f0, stage='DiT')
hop_length_f0 = config_f0['preprocess_params']['spect_params']['hop_length']
sr_f0 = config_f0['preprocess_params']['sr']
# Загрузка контрольных точек модели с F0
model_f0, _, _, _ = load_checkpoint(
model_f0, None, dit_checkpoint_path_f0,
load_only_params=True, ignore_modules=[], is_distributed=False
)
for key in model_f0:
model_f0[key].eval()
model_f0[key].to(device)
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
# Загрузка F0-экстрактора RMVPE
from modules.rmvpe import RMVPE
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
rmvpe = RMVPE(model_path, is_half=False, device=device)
# Параметры мел-спектрограммы для F0
mel_fn_args_f0 = {
"n_fft": config_f0['preprocess_params']['spect_params']['n_fft'],
"win_size": config_f0['preprocess_params']['spect_params']['win_length'],
"hop_size": config_f0['preprocess_params']['spect_params']['hop_length'],
"num_mels": config_f0['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": sr_f0,
"fmin": 0,
"fmax": None,
"center": False
}
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
# Загрузка модели BigVGAN для 44kHz
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
bigvgan_44k_model.remove_weight_norm()
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
def adjust_f0_semitones(f0_sequence, n_semitones):
factor = 2 ** (n_semitones / 12)
return f0_sequence * factor
def crossfade(chunk1, chunk2, overlap):
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
return chunk2
# Параметры для обработки потоков и чанков
max_context_window = sr // hop_length * 30
overlap_frame_len = 16
overlap_wave_len = overlap_frame_len * hop_length
bitrate = "320k"
@torch.no_grad()
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
"""
Функция для голосового преобразования.
Параметры:
- source (str): Путь к исходному аудио файлу.
- target (str): Путь к целевому аудио файлу (голос, на который нужно преобразовать).
- diffusion_steps (int): Количество шагов диффузии.
- length_adjust (float): Коэффициент регулировки длины.
- inference_cfg_rate (float): Коэффициент CFG для инференса.
- f0_condition (bool): Использовать ли условие F0.
- auto_f0_adjust (bool): Автоматически ли корректировать F0.
- pitch_shift (int): Сдвиг тона в полутонах.
Возвращает:
- tuple: (частота дискретизации, numpy массив аудио данных)
"""
inference_module = model_f0 if f0_condition else model
mel_fn = to_mel_f0 if f0_condition else to_mel
bigvgan_fn = bigvgan_44k_model if f0_condition else bigvgan_model
sr_used = sr_f0 if f0_condition else sr
# Загрузка аудио
source_audio, _ = librosa.load(source, sr=sr_used)
ref_audio, _ = librosa.load(target, sr=sr_used)
# Ограничение длины целевого аудио
ref_audio = ref_audio[:sr_used * 25]
# Преобразование аудио в тензоры
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
ref_audio = torch.tensor(ref_audio).unsqueeze(0).float().to(device)
# Ресемплирование для Whisper
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr_used, 16000)
converted_waves_16k = torchaudio.functional.resample(source_audio, sr_used, 16000)
# Извлечение признаков с помощью Whisper
if converted_waves_16k.size(-1) <= 16000 * 30:
alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True,
sampling_rate=16000)
alt_input_features = whisper_model._mask_input_features(
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
alt_outputs = whisper_model.encoder(
alt_input_features.to(whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
else:
# Обработка длинного аудио в чанках
overlapping_time = 5 # секунд
S_alt_list = []
buffer = None
traversed_time = 0
while traversed_time < converted_waves_16k.size(-1):
if buffer is None:
chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
else:
chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True,
sampling_rate=16000)
alt_input_features = whisper_model._mask_input_features(
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
alt_outputs = whisper_model.encoder(
alt_input_features.to(whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
S_alt = S_alt[:, :chunk.size(-1) // 320 + 1]
if traversed_time == 0:
S_alt_list.append(S_alt)
else:
S_alt_list.append(S_alt[:, 50 * overlapping_time:])
buffer = chunk[:, -16000 * overlapping_time:]
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
S_alt = torch.cat(S_alt_list, dim=1)
# Извлечение признаков из референсного аудио
ori_waves_16k = torchaudio.functional.resample(ref_audio, sr_used, 16000)
ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()],
return_tensors="pt",
return_attention_mask=True)
ori_input_features = whisper_model._mask_input_features(
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
with torch.no_grad():
ori_outputs = whisper_model.encoder(
ori_input_features.to(whisper_model.encoder.dtype),
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
)
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
mel = mel_fn(source_audio.to(device).float())
mel2 = mel_fn(ref_audio.to(device).float())
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
# Извлечение стиля с помощью CAMPPlus
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
style2 = campplus_model(feat2.unsqueeze(0))
if f0_condition:
# Извлечение F0 с помощью RMVPE
F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.5)
F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.5)
F0_ori = torch.from_numpy(F0_ori).to(device)[None]
F0_alt = torch.from_numpy(F0_alt).to(device)[None]
voiced_F0_ori = F0_ori[F0_ori > 1]
voiced_F0_alt = F0_alt[F0_alt > 1]
log_f0_alt = torch.log(F0_alt + 1e-5)
voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
median_log_f0_ori = torch.median(voiced_log_f0_ori)
median_log_f0_alt = torch.median(voiced_log_f0_alt)
# Корректировка F0
shifted_log_f0_alt = log_f0_alt.clone()
if auto_f0_adjust:
shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
shifted_f0_alt = torch.exp(shifted_log_f0_alt)
if pitch_shift != 0:
shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
else:
F0_ori = None
F0_alt = None
shifted_f0_alt = None
# Регулировка длины
cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(
S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt
)
prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(
S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori
)
max_source_window = max_context_window - mel2.size(2)
processed_frames = 0
generated_wave_chunks = []
# Генерация аудио по частям
while processed_frames < cond.size(1):
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
is_last_chunk = processed_frames + max_source_window >= cond.size(1)
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
vc_target = inference_module.cfm.inference(
cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
mel2, style2, None, diffusion_steps,
inference_cfg_rate=inference_cfg_rate
)
vc_target = vc_target[:, :, mel2.size(-1):]
vc_wave = bigvgan_fn(vc_target)[0]
if processed_frames == 0:
if is_last_chunk:
output_wave = vc_wave[0].cpu().numpy()
generated_wave_chunks.append(output_wave)
break
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
generated_wave_chunks.append(output_wave)
previous_chunk = vc_wave[0, -overlap_wave_len:]
processed_frames += vc_target.size(2) - overlap_frame_len
elif is_last_chunk:
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
generated_wave_chunks.append(output_wave)
processed_frames += vc_target.size(2) - overlap_frame_len
break
else:
output_wave = crossfade(
previous_chunk.cpu().numpy(),
vc_wave[0, :-overlap_wave_len].cpu().numpy(),
overlap_wave_len
)
generated_wave_chunks.append(output_wave)
previous_chunk = vc_wave[0, -overlap_wave_len:]
processed_frames += vc_target.size(2) - overlap_frame_len
# Объединение всех чанков в одно аудио
full_output_wave = np.concatenate(generated_wave_chunks)
# Нормализация аудио
max_val = np.max(np.abs(full_output_wave))
if max_val > 1.0:
full_output_wave = full_output_wave / max_val
return sr_used, full_output_wave