Uniaff's picture
Upload 101 files
0ab4532 verified
raw
history blame
8.56 kB
from dac.nn.quantize import ResidualVectorQuantize
from torch import nn
from modules.wavenet import WN
import torch
import torchaudio
import torchaudio.functional as audio_F
import numpy as np
from .alias_free_torch import *
from torch.nn.utils import weight_norm
from torch import nn, sin, pow
from einops.layers.torch import Rearrange
from dac.model.encodec import SConv1d
def init_weights(m):
if isinstance(m, nn.Conv1d):
nn.init.trunc_normal_(m.weight, std=0.02)
nn.init.constant_(m.bias, 0)
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
class SnakeBeta(nn.Module):
"""
A modified Snake function which uses separate parameters for the magnitude of the periodic components
Shape:
- Input: (B, C, T)
- Output: (B, C, T), same shape as the input
Parameters:
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
References:
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
https://arxiv.org/abs/2006.08195
Examples:
>>> a1 = snakebeta(256)
>>> x = torch.randn(256)
>>> x = a1(x)
"""
def __init__(
self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False
):
"""
Initialization.
INPUT:
- in_features: shape of the input
- alpha - trainable parameter that controls frequency
- beta - trainable parameter that controls magnitude
alpha is initialized to 1 by default, higher values = higher-frequency.
beta is initialized to 1 by default, higher values = higher-magnitude.
alpha will be trained along with the rest of your model.
"""
super(SnakeBeta, self).__init__()
self.in_features = in_features
# initialize alpha
self.alpha_logscale = alpha_logscale
if self.alpha_logscale: # log scale alphas initialized to zeros
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
else: # linear scale alphas initialized to ones
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
self.alpha.requires_grad = alpha_trainable
self.beta.requires_grad = alpha_trainable
self.no_div_by_zero = 0.000000001
def forward(self, x):
"""
Forward pass of the function.
Applies the function to the input elementwise.
SnakeBeta := x + 1/b * sin^2 (xa)
"""
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
beta = self.beta.unsqueeze(0).unsqueeze(-1)
if self.alpha_logscale:
alpha = torch.exp(alpha)
beta = torch.exp(beta)
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
return x
class ResidualUnit(nn.Module):
def __init__(self, dim: int = 16, dilation: int = 1):
super().__init__()
pad = ((7 - 1) * dilation) // 2
self.block = nn.Sequential(
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad),
Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)),
WNConv1d(dim, dim, kernel_size=1),
)
def forward(self, x):
return x + self.block(x)
class CNNLSTM(nn.Module):
def __init__(self, indim, outdim, head, global_pred=False):
super().__init__()
self.global_pred = global_pred
self.model = nn.Sequential(
ResidualUnit(indim, dilation=1),
ResidualUnit(indim, dilation=2),
ResidualUnit(indim, dilation=3),
Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)),
Rearrange("b c t -> b t c"),
)
self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)])
def forward(self, x):
# x: [B, C, T]
x = self.model(x)
if self.global_pred:
x = torch.mean(x, dim=1, keepdim=False)
outs = [head(x) for head in self.heads]
return outs
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
class FAquantizer(nn.Module):
def __init__(self, in_dim=1024,
n_p_codebooks=1,
n_c_codebooks=2,
n_t_codebooks=2,
n_r_codebooks=3,
codebook_size=1024,
codebook_dim=8,
quantizer_dropout=0.5,
causal=False,
separate_prosody_encoder=False,
timbre_norm=False,):
super(FAquantizer, self).__init__()
conv1d_type = SConv1d# if causal else nn.Conv1d
self.prosody_quantizer = ResidualVectorQuantize(
input_dim=in_dim,
n_codebooks=n_p_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
self.content_quantizer = ResidualVectorQuantize(
input_dim=in_dim,
n_codebooks=n_c_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
self.residual_quantizer = ResidualVectorQuantize(
input_dim=in_dim,
n_codebooks=n_r_codebooks,
codebook_size=codebook_size,
codebook_dim=codebook_dim,
quantizer_dropout=quantizer_dropout,
)
self.melspec_linear = conv1d_type(in_channels=20, out_channels=256, kernel_size=1, causal=causal)
self.melspec_encoder = WN(hidden_channels=256, kernel_size=5, dilation_rate=1, n_layers=8, gin_channels=0, p_dropout=0.2, causal=causal)
self.melspec_linear2 = conv1d_type(in_channels=256, out_channels=1024, kernel_size=1, causal=causal)
self.prob_random_mask_residual = 0.75
SPECT_PARAMS = {
"n_fft": 2048,
"win_length": 1200,
"hop_length": 300,
}
MEL_PARAMS = {
"n_mels": 80,
}
self.to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS
)
self.mel_mean, self.mel_std = -4, 4
self.frame_rate = 24000 / 300
self.hop_length = 300
def preprocess(self, wave_tensor, n_bins=20):
mel_tensor = self.to_mel(wave_tensor.squeeze(1))
mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std
return mel_tensor[:, :n_bins, :int(wave_tensor.size(-1) / self.hop_length)]
def forward(self, x, wave_segments):
outs = 0
prosody_feature = self.preprocess(wave_segments)
f0_input = prosody_feature # (B, T, 20)
f0_input = self.melspec_linear(f0_input)
f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(
f0_input.device).bool())
f0_input = self.melspec_linear2(f0_input)
common_min_size = min(f0_input.size(2), x.size(2))
f0_input = f0_input[:, :, :common_min_size]
x = x[:, :, :common_min_size]
z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer(
f0_input, 1
)
outs += z_p.detach()
z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer(
x, 2
)
outs += z_c.detach()
residual_feature = x - z_p.detach() - z_c.detach()
z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer(
residual_feature, 3
)
quantized = [z_p, z_c, z_r]
codes = [codes_p, codes_c, codes_r]
return quantized, codes