import torch import torchaudio import librosa from modules.commons import build_model, load_checkpoint, recursive_munch import yaml from hf_utils import load_custom_model_from_hf import numpy as np # Загрузка моделей и конфигураций device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Загрузка конфигурации и модели DiT dit_checkpoint_path, dit_config_path = load_custom_model_from_hf( "Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth", "config_dit_mel_seed_uvit_whisper_small_wavenet.yml" ) config = yaml.safe_load(open(dit_config_path, 'r')) model_params = recursive_munch(config['model_params']) model = build_model(model_params, stage='DiT') hop_length = config['preprocess_params']['spect_params']['hop_length'] sr = config['preprocess_params']['sr'] # Загрузка контрольных точек модели model, _, _, _ = load_checkpoint( model, None, dit_checkpoint_path, load_only_params=True, ignore_modules=[], is_distributed=False ) for key in model: model[key].eval() model[key].to(device) model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) # Загрузка дополнительной модели CAMPPlus from modules.campplus.DTDNN import CAMPPlus campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None) campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu")) campplus_model.eval() campplus_model.to(device) # Загрузка модели BigVGAN from modules.bigvgan import bigvgan bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False) bigvgan_model.remove_weight_norm() bigvgan_model = bigvgan_model.eval().to(device) # Загрузка модели FAcodec ckpt_path, config_path = load_custom_model_from_hf("Plachta/FAcodec", 'pytorch_model.bin', 'config.yml') codec_config = yaml.safe_load(open(config_path)) codec_model_params = recursive_munch(codec_config['model_params']) codec_encoder = build_model(codec_model_params, stage="codec") ckpt_params = torch.load(ckpt_path, map_location="cpu") for key in codec_encoder: codec_encoder[key].load_state_dict(ckpt_params[key], strict=False) _ = [codec_encoder[key].eval() for key in codec_encoder] _ = [codec_encoder[key].to(device) for key in codec_encoder] # Загрузка модели Whisper from transformers import AutoFeatureExtractor, WhisperModel whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small" whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device) del whisper_model.decoder whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name) # Функция для генерации мел-спектрограммы mel_fn_args = { "n_fft": config['preprocess_params']['spect_params']['n_fft'], "win_size": config['preprocess_params']['spect_params']['win_length'], "hop_size": config['preprocess_params']['spect_params']['hop_length'], "num_mels": config['preprocess_params']['spect_params']['n_mels'], "sampling_rate": sr, "fmin": 0, "fmax": None, "center": False } from modules.audio import mel_spectrogram to_mel = lambda x: mel_spectrogram(x, **mel_fn_args) # Модель с F0 условием dit_checkpoint_path_f0, dit_config_path_f0 = load_custom_model_from_hf( "Plachta/Seed-VC", "DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth", "config_dit_mel_seed_uvit_whisper_base_f0_44k.yml" ) config_f0 = yaml.safe_load(open(dit_config_path_f0, 'r')) model_params_f0 = recursive_munch(config_f0['model_params']) model_f0 = build_model(model_params_f0, stage='DiT') hop_length_f0 = config_f0['preprocess_params']['spect_params']['hop_length'] sr_f0 = config_f0['preprocess_params']['sr'] # Загрузка контрольных точек модели с F0 model_f0, _, _, _ = load_checkpoint( model_f0, None, dit_checkpoint_path_f0, load_only_params=True, ignore_modules=[], is_distributed=False ) for key in model_f0: model_f0[key].eval() model_f0[key].to(device) model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) # Загрузка F0-экстрактора RMVPE from modules.rmvpe import RMVPE model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None) rmvpe = RMVPE(model_path, is_half=False, device=device) # Параметры мел-спектрограммы для F0 mel_fn_args_f0 = { "n_fft": config_f0['preprocess_params']['spect_params']['n_fft'], "win_size": config_f0['preprocess_params']['spect_params']['win_length'], "hop_size": config_f0['preprocess_params']['spect_params']['hop_length'], "num_mels": config_f0['preprocess_params']['spect_params']['n_mels'], "sampling_rate": sr_f0, "fmin": 0, "fmax": None, "center": False } to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0) # Загрузка модели BigVGAN для 44kHz bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False) bigvgan_44k_model.remove_weight_norm() bigvgan_44k_model = bigvgan_44k_model.eval().to(device) def adjust_f0_semitones(f0_sequence, n_semitones): factor = 2 ** (n_semitones / 12) return f0_sequence * factor def crossfade(chunk1, chunk2, overlap): fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2 fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2 chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out return chunk2 # Параметры для обработки потоков и чанков max_context_window = sr // hop_length * 30 overlap_frame_len = 16 overlap_wave_len = overlap_frame_len * hop_length bitrate = "320k" @torch.no_grad() def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift): """ Функция для голосового преобразования. Параметры: - source (str): Путь к исходному аудио файлу. - target (str): Путь к целевому аудио файлу (голос, на который нужно преобразовать). - diffusion_steps (int): Количество шагов диффузии. - length_adjust (float): Коэффициент регулировки длины. - inference_cfg_rate (float): Коэффициент CFG для инференса. - f0_condition (bool): Использовать ли условие F0. - auto_f0_adjust (bool): Автоматически ли корректировать F0. - pitch_shift (int): Сдвиг тона в полутонах. Возвращает: - tuple: (частота дискретизации, numpy массив аудио данных) """ inference_module = model_f0 if f0_condition else model mel_fn = to_mel_f0 if f0_condition else to_mel bigvgan_fn = bigvgan_44k_model if f0_condition else bigvgan_model sr_used = sr_f0 if f0_condition else sr # Загрузка аудио source_audio, _ = librosa.load(source, sr=sr_used) ref_audio, _ = librosa.load(target, sr=sr_used) # Ограничение длины целевого аудио ref_audio = ref_audio[:sr_used * 25] # Преобразование аудио в тензоры source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device) ref_audio = torch.tensor(ref_audio).unsqueeze(0).float().to(device) # Ресемплирование для Whisper ref_waves_16k = torchaudio.functional.resample(ref_audio, sr_used, 16000) converted_waves_16k = torchaudio.functional.resample(source_audio, sr_used, 16000) # Извлечение признаков с помощью Whisper if converted_waves_16k.size(-1) <= 16000 * 30: alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=16000) alt_input_features = whisper_model._mask_input_features( alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device) alt_outputs = whisper_model.encoder( alt_input_features.to(whisper_model.encoder.dtype), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ) S_alt = alt_outputs.last_hidden_state.to(torch.float32) S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1] else: # Обработка длинного аудио в чанках overlapping_time = 5 # секунд S_alt_list = [] buffer = None traversed_time = 0 while traversed_time < converted_waves_16k.size(-1): if buffer is None: chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30] else: chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1) alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True, sampling_rate=16000) alt_input_features = whisper_model._mask_input_features( alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device) alt_outputs = whisper_model.encoder( alt_input_features.to(whisper_model.encoder.dtype), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ) S_alt = alt_outputs.last_hidden_state.to(torch.float32) S_alt = S_alt[:, :chunk.size(-1) // 320 + 1] if traversed_time == 0: S_alt_list.append(S_alt) else: S_alt_list.append(S_alt[:, 50 * overlapping_time:]) buffer = chunk[:, -16000 * overlapping_time:] traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time S_alt = torch.cat(S_alt_list, dim=1) # Извлечение признаков из референсного аудио ori_waves_16k = torchaudio.functional.resample(ref_audio, sr_used, 16000) ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()], return_tensors="pt", return_attention_mask=True) ori_input_features = whisper_model._mask_input_features( ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device) with torch.no_grad(): ori_outputs = whisper_model.encoder( ori_input_features.to(whisper_model.encoder.dtype), head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ) S_ori = ori_outputs.last_hidden_state.to(torch.float32) S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1] mel = mel_fn(source_audio.to(device).float()) mel2 = mel_fn(ref_audio.to(device).float()) target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device) target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device) # Извлечение стиля с помощью CAMPPlus feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k, num_mel_bins=80, dither=0, sample_frequency=16000) feat2 = feat2 - feat2.mean(dim=0, keepdim=True) style2 = campplus_model(feat2.unsqueeze(0)) if f0_condition: # Извлечение F0 с помощью RMVPE F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.5) F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.5) F0_ori = torch.from_numpy(F0_ori).to(device)[None] F0_alt = torch.from_numpy(F0_alt).to(device)[None] voiced_F0_ori = F0_ori[F0_ori > 1] voiced_F0_alt = F0_alt[F0_alt > 1] log_f0_alt = torch.log(F0_alt + 1e-5) voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5) voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5) median_log_f0_ori = torch.median(voiced_log_f0_ori) median_log_f0_alt = torch.median(voiced_log_f0_alt) # Корректировка F0 shifted_log_f0_alt = log_f0_alt.clone() if auto_f0_adjust: shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori shifted_f0_alt = torch.exp(shifted_log_f0_alt) if pitch_shift != 0: shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift) else: F0_ori = None F0_alt = None shifted_f0_alt = None # Регулировка длины cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator( S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt ) prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator( S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori ) max_source_window = max_context_window - mel2.size(2) processed_frames = 0 generated_wave_chunks = [] # Генерация аудио по частям while processed_frames < cond.size(1): chunk_cond = cond[:, processed_frames:processed_frames + max_source_window] is_last_chunk = processed_frames + max_source_window >= cond.size(1) cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1) vc_target = inference_module.cfm.inference( cat_condition, torch.LongTensor([cat_condition.size(1)]).to(mel2.device), mel2, style2, None, diffusion_steps, inference_cfg_rate=inference_cfg_rate ) vc_target = vc_target[:, :, mel2.size(-1):] vc_wave = bigvgan_fn(vc_target)[0] if processed_frames == 0: if is_last_chunk: output_wave = vc_wave[0].cpu().numpy() generated_wave_chunks.append(output_wave) break output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy() generated_wave_chunks.append(output_wave) previous_chunk = vc_wave[0, -overlap_wave_len:] processed_frames += vc_target.size(2) - overlap_frame_len elif is_last_chunk: output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len) generated_wave_chunks.append(output_wave) processed_frames += vc_target.size(2) - overlap_frame_len break else: output_wave = crossfade( previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len ) generated_wave_chunks.append(output_wave) previous_chunk = vc_wave[0, -overlap_wave_len:] processed_frames += vc_target.size(2) - overlap_frame_len # Объединение всех чанков в одно аудио full_output_wave = np.concatenate(generated_wave_chunks) # Нормализация аудио max_val = np.max(np.abs(full_output_wave)) if max_val > 1.0: full_output_wave = full_output_wave / max_val return sr_used, full_output_wave