Uniaff commited on
Commit
91c5333
·
verified ·
1 Parent(s): 17ea3d2

Update func_ai.py

Browse files
Files changed (1) hide show
  1. func_ai.py +9 -11
func_ai.py CHANGED
@@ -9,7 +9,6 @@ VECTOR_API_URL = os.getenv('API_URL')
9
 
10
  # translator = Translator()
11
 
12
-
13
  sentiment_model = pipeline(
14
  'sentiment-analysis',
15
  model='cardiffnlp/twitter-xlm-roberta-base-sentiment',
@@ -17,15 +16,12 @@ sentiment_model = pipeline(
17
  device=0 if torch.cuda.is_available() else -1
18
  )
19
 
20
-
21
-
22
  classifier = pipeline(
23
  "zero-shot-classification",
24
  model="valhalla/distilbart-mnli-12-6",
25
  device=0 if torch.cuda.is_available() else -1
26
  )
27
 
28
-
29
  def classify_comment(text):
30
  if not text:
31
  print("Received empty text for classification.")
@@ -33,43 +29,45 @@ def classify_comment(text):
33
  print(f"Classifying comment: {text}")
34
  try:
35
  translated_text = GoogleTranslator(source='auto', target="en").translate(text)
 
36
  except Exception as e:
37
  print(f"Translation failed: {e}")
38
  return "non-interrogative"
39
  if not translated_text:
40
  print("Translation returned empty text.")
41
  return "non-interrogative"
42
- print(f"Translated text: {translated_text}")
43
  try:
44
  result = classifier(translated_text, ["interrogative", "non-interrogative"], clean_up_tokenization_spaces=True)
 
45
  except Exception as e:
46
  print(f"Classification failed: {e}")
47
  return "non-interrogative"
 
48
  top_class = result['labels'][0]
 
49
  return top_class
50
 
51
-
52
  def retrieve_from_vdb(query):
53
  print(f"Отправка запроса к FastAPI сервису: {query}")
54
  response = requests.post(f"{VECTOR_API_URL}/search/", json={"query": query})
55
  if response.status_code == 200:
56
  results = response.json().get("results", [])
57
- print(f"Получено {len(results)} результатов.")
58
  return results
59
  else:
60
  print(f"Ошибка при поиске: {response.text}")
61
  return []
62
 
63
-
64
  def analyze_sentiment(comments):
65
  print("Начинаем анализ настроений.")
66
  results = []
67
  for i in range(0, len(comments), 50):
68
  batch = comments[i:i + 50]
69
- print(f"Анализируем батч с {i} по {i + len(batch)} комментарий.")
70
  batch_results = sentiment_model(batch)
 
71
  results.extend(batch_results)
72
  time.sleep(1) # Задержка для предотвращения перегрузки
73
- print("Анализ настроений завершен.")
74
  return results
75
-
 
9
 
10
  # translator = Translator()
11
 
 
12
  sentiment_model = pipeline(
13
  'sentiment-analysis',
14
  model='cardiffnlp/twitter-xlm-roberta-base-sentiment',
 
16
  device=0 if torch.cuda.is_available() else -1
17
  )
18
 
 
 
19
  classifier = pipeline(
20
  "zero-shot-classification",
21
  model="valhalla/distilbart-mnli-12-6",
22
  device=0 if torch.cuda.is_available() else -1
23
  )
24
 
 
25
  def classify_comment(text):
26
  if not text:
27
  print("Received empty text for classification.")
 
29
  print(f"Classifying comment: {text}")
30
  try:
31
  translated_text = GoogleTranslator(source='auto', target="en").translate(text)
32
+ print(f"Translated text: {translated_text}")
33
  except Exception as e:
34
  print(f"Translation failed: {e}")
35
  return "non-interrogative"
36
  if not translated_text:
37
  print("Translation returned empty text.")
38
  return "non-interrogative"
39
+
40
  try:
41
  result = classifier(translated_text, ["interrogative", "non-interrogative"], clean_up_tokenization_spaces=True)
42
+ print(f"Classification result: {result}")
43
  except Exception as e:
44
  print(f"Classification failed: {e}")
45
  return "non-interrogative"
46
+
47
  top_class = result['labels'][0]
48
+ print(f"Top class: {top_class}")
49
  return top_class
50
 
 
51
  def retrieve_from_vdb(query):
52
  print(f"Отправка запроса к FastAPI сервису: {query}")
53
  response = requests.post(f"{VECTOR_API_URL}/search/", json={"query": query})
54
  if response.status_code == 200:
55
  results = response.json().get("results", [])
56
+ print(f"Получено {len(results)} результатов: {results}")
57
  return results
58
  else:
59
  print(f"Ошибка при поиске: {response.text}")
60
  return []
61
 
 
62
  def analyze_sentiment(comments):
63
  print("Начинаем анализ настроений.")
64
  results = []
65
  for i in range(0, len(comments), 50):
66
  batch = comments[i:i + 50]
67
+ print(f"Анализируем батч с {i} по {i + len(batch)} комментарий: {batch}")
68
  batch_results = sentiment_model(batch)
69
+ print(f"Результаты батча: {batch_results}")
70
  results.extend(batch_results)
71
  time.sleep(1) # Задержка для предотвращения перегрузки
72
+ print("Анализ настроений завершен. Общие результаты: {results}")
73
  return results