Whisper_Test / app.py
UnionJack's picture
modificaciones necesarias
eda3ea4 verified
raw
history blame
682 Bytes
import gradio as gr
from transformers import pipeline
import whisper
model_whisper = whisper.load_model("base")
nlp_model = pipeline("summarization", model="t5-base")
def process_audio(audio_file):
transcription = model_whisper.transcribe(audio_file)["text"]
summary = nlp_model(transcription)[0]["summary_text"]
return transcription, summary
interface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(type="filepath"),
outputs=["text", "text"],
title="Transcripción y Análisis de Audio - PNL",
description="Sube un archivo de audio para transcribirlo y resumir el contenido o activa tu microfono y habla."
)
interface.launch()