Spaces:
Sleeping
Sleeping
commit inicial
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import whisper
|
4 |
+
|
5 |
+
# Cargar el modelo de transcripci贸n Whisper
|
6 |
+
model_whisper = whisper.load_model("base")
|
7 |
+
|
8 |
+
# Cargar un modelo de lenguaje pre-entrenado para PLN (Hugging Face)
|
9 |
+
# Ejemplo de T5 para tareas de generaci贸n de texto
|
10 |
+
nlp_model = pipeline("summarization", model="t5-base")
|
11 |
+
|
12 |
+
# Funci贸n para transcribir el audio y procesar el texto
|
13 |
+
def process_audio(audio_file):
|
14 |
+
# Transcribir el audio
|
15 |
+
transcription = model_whisper.transcribe(audio_file)["text"]
|
16 |
+
|
17 |
+
# Realizar tareas de PLN sobre el texto transcrito
|
18 |
+
summary = nlp_model(transcription)[0]["summary_text"]
|
19 |
+
|
20 |
+
return transcription, summary
|
21 |
+
|
22 |
+
# Interfaz de usuario usando Gradio
|
23 |
+
interface = gr.Interface(
|
24 |
+
fn=process_audio,
|
25 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
26 |
+
outputs=["text", "text"],
|
27 |
+
title="Transcripci贸n y An谩lisis de Audio",
|
28 |
+
description="Sube un archivo de audio para transcribirlo y resumir el contenido."
|
29 |
+
)
|
30 |
+
|
31 |
+
interface.launch()
|