import gradio as gr from transformers import pipeline import whisper model_whisper = whisper.load_model("base") nlp_model = pipeline("summarization", model="t5-base") def process_audio(audio_file): transcription = model_whisper.transcribe(audio_file)["text"] summary = nlp_model(transcription)[0]["summary_text"] return transcription, summary interface = gr.Interface( fn=process_audio, inputs=gr.Audio(type="filepath"), outputs=[gr.Textbox(label="Transcripción"), gr.Textbox(label="Resumen")], title="Transcripción y Análisis de Audio - PNL", description="Sube un archivo de audio para transcribirlo y resumir el contenido o activa tu microfono y habla." ) interface.launch()