Spaces:
Sleeping
Sleeping
Commit
Β·
f3d6510
1
Parent(s):
538765f
[Init] Setup
Browse files- resume_agent.py +491 -0
resume_agent.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import re
|
3 |
+
from typing import Dict, List, Optional, Tuple
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from abc import ABC, abstractmethod
|
6 |
+
import google.generativeai as genai
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
# Configure Gemini API
|
10 |
+
genai.configure(api_key="YOUR_GEMINI_API_KEY")
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class ResumeData:
|
14 |
+
"""Data structure to hold resume information"""
|
15 |
+
personal_info: Dict
|
16 |
+
summary: str
|
17 |
+
experiences: List[Dict]
|
18 |
+
skills: List[str]
|
19 |
+
education: List[Dict]
|
20 |
+
raw_text: str
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class JobDescription:
|
24 |
+
"""Data structure for job descriptions"""
|
25 |
+
title: str
|
26 |
+
company: str
|
27 |
+
description: str
|
28 |
+
requirements: List[str]
|
29 |
+
keywords: List[str]
|
30 |
+
|
31 |
+
class Agent(ABC):
|
32 |
+
"""Base agent class"""
|
33 |
+
|
34 |
+
def __init__(self, model_name: str = "gemini-1.5-flash"):
|
35 |
+
self.model = genai.GenerativeModel(model_name)
|
36 |
+
|
37 |
+
@abstractmethod
|
38 |
+
def execute(self, *args, **kwargs):
|
39 |
+
pass
|
40 |
+
|
41 |
+
def generate_response(self, prompt: str) -> str:
|
42 |
+
"""Generate response using Gemini"""
|
43 |
+
try:
|
44 |
+
response = self.model.generate_content(prompt)
|
45 |
+
return response.text
|
46 |
+
except Exception as e:
|
47 |
+
return f"Error generating response: {str(e)}"
|
48 |
+
|
49 |
+
class SummaryAgent(Agent):
|
50 |
+
"""Agent responsible for creating compelling professional summaries"""
|
51 |
+
|
52 |
+
def execute(self, resume_data: ResumeData, job_desc: Optional[JobDescription] = None) -> str:
|
53 |
+
context = f"""
|
54 |
+
Personal Info: {resume_data.personal_info}
|
55 |
+
Experience: {resume_data.experiences}
|
56 |
+
Skills: {resume_data.skills}
|
57 |
+
Education: {resume_data.education}
|
58 |
+
"""
|
59 |
+
|
60 |
+
job_context = ""
|
61 |
+
if job_desc:
|
62 |
+
job_context = f"""
|
63 |
+
Target Job: {job_desc.title} at {job_desc.company}
|
64 |
+
Job Requirements: {job_desc.requirements}
|
65 |
+
"""
|
66 |
+
|
67 |
+
prompt = f"""
|
68 |
+
Create a compelling professional summary (2-3 sentences) based on this resume information:
|
69 |
+
{context}
|
70 |
+
|
71 |
+
{job_context}
|
72 |
+
|
73 |
+
Guidelines:
|
74 |
+
- Highlight unique value proposition
|
75 |
+
- Use action-oriented language
|
76 |
+
- Focus on achievements and impact
|
77 |
+
- Keep it concise and engaging
|
78 |
+
- If job description provided, align with role requirements
|
79 |
+
|
80 |
+
Return only the professional summary text.
|
81 |
+
"""
|
82 |
+
|
83 |
+
return self.generate_response(prompt)
|
84 |
+
|
85 |
+
class ExperienceMatchingAgent(Agent):
|
86 |
+
"""Agent for matching experiences to job descriptions"""
|
87 |
+
|
88 |
+
def execute(self, resume_data: ResumeData, job_desc: JobDescription) -> List[Dict]:
|
89 |
+
experiences_text = json.dumps(resume_data.experiences, indent=2)
|
90 |
+
|
91 |
+
prompt = f"""
|
92 |
+
Analyze these work experiences and rank them by relevance to the target job:
|
93 |
+
|
94 |
+
EXPERIENCES:
|
95 |
+
{experiences_text}
|
96 |
+
|
97 |
+
TARGET JOB:
|
98 |
+
Title: {job_desc.title}
|
99 |
+
Company: {job_desc.company}
|
100 |
+
Description: {job_desc.description}
|
101 |
+
Requirements: {job_desc.requirements}
|
102 |
+
|
103 |
+
For each experience, provide:
|
104 |
+
1. Relevance score (1-10)
|
105 |
+
2. Key matching points
|
106 |
+
3. Suggested improvements for better alignment
|
107 |
+
4. Recommended order for resume
|
108 |
+
|
109 |
+
Return as JSON format:
|
110 |
+
{{
|
111 |
+
"ranked_experiences": [
|
112 |
+
{{
|
113 |
+
"original_experience": {{...}},
|
114 |
+
"relevance_score": 8,
|
115 |
+
"matching_points": ["point1", "point2"],
|
116 |
+
"suggested_improvements": ["improvement1", "improvement2"],
|
117 |
+
"recommended_position": 1
|
118 |
+
}}
|
119 |
+
]
|
120 |
+
}}
|
121 |
+
"""
|
122 |
+
|
123 |
+
response = self.generate_response(prompt)
|
124 |
+
try:
|
125 |
+
return json.loads(response)
|
126 |
+
except json.JSONDecodeError:
|
127 |
+
return {"error": "Failed to parse experience matching results"}
|
128 |
+
|
129 |
+
class KeywordOptimizationAgent(Agent):
|
130 |
+
"""Agent for optimizing ATS keywords"""
|
131 |
+
|
132 |
+
def execute(self, resume_data: ResumeData, job_desc: JobDescription) -> Dict:
|
133 |
+
prompt = f"""
|
134 |
+
Analyze the resume and job description to optimize ATS keywords:
|
135 |
+
|
136 |
+
RESUME CONTENT:
|
137 |
+
Summary: {resume_data.summary}
|
138 |
+
Skills: {resume_data.skills}
|
139 |
+
Experiences: {json.dumps(resume_data.experiences)}
|
140 |
+
|
141 |
+
JOB DESCRIPTION:
|
142 |
+
{job_desc.description}
|
143 |
+
Requirements: {job_desc.requirements}
|
144 |
+
|
145 |
+
Provide:
|
146 |
+
1. Missing critical keywords from job description
|
147 |
+
2. Keyword density analysis
|
148 |
+
3. Suggested keyword placements
|
149 |
+
4. Industry-specific terms to include
|
150 |
+
5. ATS optimization score (1-100)
|
151 |
+
|
152 |
+
Return as JSON:
|
153 |
+
{{
|
154 |
+
"missing_keywords": ["keyword1", "keyword2"],
|
155 |
+
"current_keyword_density": {{"keyword": "frequency"}},
|
156 |
+
"suggested_placements": [
|
157 |
+
{{
|
158 |
+
"keyword": "Python",
|
159 |
+
"sections": ["skills", "experience"],
|
160 |
+
"context": "Add to technical skills section"
|
161 |
+
}}
|
162 |
+
],
|
163 |
+
"industry_terms": ["term1", "term2"],
|
164 |
+
"ats_score": 75,
|
165 |
+
"recommendations": ["rec1", "rec2"]
|
166 |
+
}}
|
167 |
+
"""
|
168 |
+
|
169 |
+
response = self.generate_response(prompt)
|
170 |
+
try:
|
171 |
+
return json.loads(response)
|
172 |
+
except json.JSONDecodeError:
|
173 |
+
return {"error": "Failed to parse keyword optimization results"}
|
174 |
+
|
175 |
+
class DesignAgent(Agent):
|
176 |
+
"""Agent for design and formatting suggestions"""
|
177 |
+
|
178 |
+
def execute(self, resume_data: ResumeData, job_desc: Optional[JobDescription] = None) -> Dict:
|
179 |
+
industry = job_desc.title.split()[0] if job_desc else "General"
|
180 |
+
|
181 |
+
prompt = f"""
|
182 |
+
Suggest design and formatting improvements for a {industry} professional's resume:
|
183 |
+
|
184 |
+
CURRENT RESUME STRUCTURE:
|
185 |
+
- Personal Info: {len(resume_data.personal_info)} fields
|
186 |
+
- Experiences: {len(resume_data.experiences)} positions
|
187 |
+
- Skills: {len(resume_data.skills)} skills listed
|
188 |
+
- Education: {len(resume_data.education)} entries
|
189 |
+
|
190 |
+
Consider:
|
191 |
+
1. Industry standards for {industry}
|
192 |
+
2. ATS-friendly formatting
|
193 |
+
3. Visual hierarchy and readability
|
194 |
+
4. Professional appearance
|
195 |
+
5. Length optimization
|
196 |
+
|
197 |
+
Return JSON with:
|
198 |
+
{{
|
199 |
+
"recommended_template": "template_name",
|
200 |
+
"layout_suggestions": ["suggestion1", "suggestion2"],
|
201 |
+
"formatting_rules": ["rule1", "rule2"],
|
202 |
+
"color_scheme": "color_description",
|
203 |
+
"typography": "font_recommendations",
|
204 |
+
"sections_order": ["section1", "section2", "section3"],
|
205 |
+
"design_tips": ["tip1", "tip2"]
|
206 |
+
}}
|
207 |
+
"""
|
208 |
+
|
209 |
+
response = self.generate_response(prompt)
|
210 |
+
try:
|
211 |
+
return json.loads(response)
|
212 |
+
except json.JSONDecodeError:
|
213 |
+
return {"error": "Failed to parse design suggestions"}
|
214 |
+
|
215 |
+
class EditingAgent(Agent):
|
216 |
+
"""Agent for grammar, punctuation, and content improvement"""
|
217 |
+
|
218 |
+
def execute(self, text: str) -> Dict:
|
219 |
+
prompt = f"""
|
220 |
+
Analyze this resume text for improvements:
|
221 |
+
|
222 |
+
TEXT TO REVIEW:
|
223 |
+
{text}
|
224 |
+
|
225 |
+
Check for:
|
226 |
+
1. Grammar and punctuation errors
|
227 |
+
2. Clarity and conciseness
|
228 |
+
3. Action verb usage
|
229 |
+
4. Quantifiable achievements
|
230 |
+
5. Professional tone
|
231 |
+
6. Consistency in formatting
|
232 |
+
|
233 |
+
Return JSON:
|
234 |
+
{{
|
235 |
+
"grammar_errors": [
|
236 |
+
{{
|
237 |
+
"original": "original text",
|
238 |
+
"corrected": "corrected text",
|
239 |
+
"explanation": "reason for change"
|
240 |
+
}}
|
241 |
+
],
|
242 |
+
"clarity_improvements": [
|
243 |
+
{{
|
244 |
+
"original": "original text",
|
245 |
+
"improved": "improved text",
|
246 |
+
"reason": "why it's better"
|
247 |
+
}}
|
248 |
+
],
|
249 |
+
"action_verb_suggestions": ["verb1", "verb2"],
|
250 |
+
"quantification_opportunities": ["opportunity1", "opportunity2"],
|
251 |
+
"overall_score": 85,
|
252 |
+
"summary_feedback": "Overall assessment"
|
253 |
+
}}
|
254 |
+
"""
|
255 |
+
|
256 |
+
response = self.generate_response(prompt)
|
257 |
+
try:
|
258 |
+
return json.loads(response)
|
259 |
+
except json.JSONDecodeError:
|
260 |
+
return {"error": "Failed to parse editing suggestions"}
|
261 |
+
|
262 |
+
class ResumeAgent:
|
263 |
+
"""Main orchestrating agent that coordinates all sub-agents"""
|
264 |
+
|
265 |
+
def __init__(self):
|
266 |
+
self.summary_agent = SummaryAgent()
|
267 |
+
self.experience_agent = ExperienceMatchingAgent()
|
268 |
+
self.keyword_agent = KeywordOptimizationAgent()
|
269 |
+
self.design_agent = DesignAgent()
|
270 |
+
self.editing_agent = EditingAgent()
|
271 |
+
|
272 |
+
def parse_resume(self, resume_text: str) -> ResumeData:
|
273 |
+
"""Simple resume parsing - can be enhanced with proper NLP"""
|
274 |
+
# This is a simplified parser - in production, you'd use more sophisticated parsing
|
275 |
+
lines = resume_text.split('\n')
|
276 |
+
|
277 |
+
# Extract basic sections (this is a simplified implementation)
|
278 |
+
personal_info = {"name": "John Doe", "email": "[email protected]"} # Placeholder
|
279 |
+
summary = ""
|
280 |
+
experiences = []
|
281 |
+
skills = []
|
282 |
+
education = []
|
283 |
+
|
284 |
+
# Simple pattern matching (enhance as needed)
|
285 |
+
current_section = None
|
286 |
+
for line in lines:
|
287 |
+
line = line.strip()
|
288 |
+
if re.match(r'(summary|profile|objective)', line.lower()):
|
289 |
+
current_section = 'summary'
|
290 |
+
elif re.match(r'(experience|work|employment)', line.lower()):
|
291 |
+
current_section = 'experience'
|
292 |
+
elif re.match(r'(skills|technical)', line.lower()):
|
293 |
+
current_section = 'skills'
|
294 |
+
elif re.match(r'(education|academic)', line.lower()):
|
295 |
+
current_section = 'education'
|
296 |
+
elif line and current_section:
|
297 |
+
if current_section == 'summary':
|
298 |
+
summary += line + " "
|
299 |
+
elif current_section == 'skills':
|
300 |
+
skills.extend([skill.strip() for skill in line.split(',')])
|
301 |
+
|
302 |
+
return ResumeData(
|
303 |
+
personal_info=personal_info,
|
304 |
+
summary=summary.strip(),
|
305 |
+
experiences=experiences,
|
306 |
+
skills=skills,
|
307 |
+
education=education,
|
308 |
+
raw_text=resume_text
|
309 |
+
)
|
310 |
+
|
311 |
+
def optimize_resume(self, resume_text: str, job_description: Optional[str] = None) -> Dict:
|
312 |
+
"""Main method to optimize resume using all agents"""
|
313 |
+
|
314 |
+
# Parse resume
|
315 |
+
resume_data = self.parse_resume(resume_text)
|
316 |
+
|
317 |
+
# Parse job description if provided
|
318 |
+
job_desc = None
|
319 |
+
if job_description:
|
320 |
+
job_desc = JobDescription(
|
321 |
+
title="Target Position",
|
322 |
+
company="Target Company",
|
323 |
+
description=job_description,
|
324 |
+
requirements=[req.strip() for req in job_description.split('.') if req.strip()],
|
325 |
+
keywords=[]
|
326 |
+
)
|
327 |
+
|
328 |
+
results = {
|
329 |
+
"timestamp": datetime.now().isoformat(),
|
330 |
+
"original_resume": resume_data.__dict__,
|
331 |
+
}
|
332 |
+
|
333 |
+
# Generate new summary
|
334 |
+
print("π Generating compelling summary...")
|
335 |
+
results["new_summary"] = self.summary_agent.execute(resume_data, job_desc)
|
336 |
+
|
337 |
+
# Match experiences to job
|
338 |
+
if job_desc:
|
339 |
+
print("π Analyzing experience relevance...")
|
340 |
+
results["experience_matching"] = self.experience_agent.execute(resume_data, job_desc)
|
341 |
+
|
342 |
+
print("π Optimizing keywords for ATS...")
|
343 |
+
results["keyword_optimization"] = self.keyword_agent.execute(resume_data, job_desc)
|
344 |
+
|
345 |
+
# Design suggestions
|
346 |
+
print("π Generating design recommendations...")
|
347 |
+
results["design_suggestions"] = self.design_agent.execute(resume_data, job_desc)
|
348 |
+
|
349 |
+
# Edit and improve
|
350 |
+
print("π Analyzing content for improvements...")
|
351 |
+
results["editing_suggestions"] = self.editing_agent.execute(resume_text)
|
352 |
+
|
353 |
+
return results
|
354 |
+
|
355 |
+
# File handling utilities
|
356 |
+
def read_file(file_path: str) -> str:
|
357 |
+
"""Read content from a file"""
|
358 |
+
try:
|
359 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
360 |
+
return file.read()
|
361 |
+
except FileNotFoundError:
|
362 |
+
print(f"β File not found: {file_path}")
|
363 |
+
return ""
|
364 |
+
except Exception as e:
|
365 |
+
print(f"β Error reading file: {str(e)}")
|
366 |
+
return ""
|
367 |
+
|
368 |
+
def get_sample_resume() -> str:
|
369 |
+
"""Return sample resume text"""
|
370 |
+
return """
|
371 |
+
John Doe
|
372 |
+
Software Engineer
|
373 | |
374 |
+
(555) 123-4567
|
375 |
+
|
376 |
+
SUMMARY
|
377 |
+
Experienced software developer with 5 years in web development and system design.
|
378 |
+
|
379 |
+
EXPERIENCE
|
380 |
+
Software Developer at TechCorp (2019-2024)
|
381 |
+
- Developed web applications using Python and JavaScript
|
382 |
+
- Worked with databases and APIs
|
383 |
+
- Collaborated with team members on agile projects
|
384 |
+
- Maintained code quality and performed code reviews
|
385 |
+
|
386 |
+
Senior Developer Intern at StartupXYZ (2018-2019)
|
387 |
+
- Built responsive web interfaces using React
|
388 |
+
- Integrated third-party APIs and services
|
389 |
+
- Participated in daily standups and sprint planning
|
390 |
+
|
391 |
+
SKILLS
|
392 |
+
Python, JavaScript, React, SQL, Git, Docker, AWS, REST APIs
|
393 |
+
|
394 |
+
EDUCATION
|
395 |
+
BS Computer Science, University XYZ (2019)
|
396 |
+
GPA: 3.7/4.0
|
397 |
+
"""
|
398 |
+
|
399 |
+
def get_sample_job_description() -> str:
|
400 |
+
"""Return sample job description"""
|
401 |
+
return """
|
402 |
+
Senior Python Developer position at InnovaTech
|
403 |
+
|
404 |
+
We are looking for an experienced Python developer with expertise in Django,
|
405 |
+
REST APIs, database optimization, and cloud technologies. The ideal candidate
|
406 |
+
should have 3+ years of experience, strong problem-solving skills, and
|
407 |
+
experience with AWS or Azure.
|
408 |
+
|
409 |
+
Requirements:
|
410 |
+
- 3+ years of Python development experience
|
411 |
+
- Strong knowledge of Django framework
|
412 |
+
- Experience with REST API development
|
413 |
+
- Database design and optimization skills
|
414 |
+
- Cloud platform experience (AWS/Azure)
|
415 |
+
- Git version control
|
416 |
+
- Agile development methodology
|
417 |
+
- Strong communication skills
|
418 |
+
"""
|
419 |
+
|
420 |
+
# Example usage and testing
|
421 |
+
def main():
|
422 |
+
"""Main function with file upload capability"""
|
423 |
+
|
424 |
+
print("π AI Resume Optimization Agent")
|
425 |
+
print("=" * 50)
|
426 |
+
|
427 |
+
# Get resume content
|
428 |
+
resume_file = input("π Enter resume file path (or press Enter for sample): ").strip()
|
429 |
+
if resume_file and resume_file != "":
|
430 |
+
resume_text = read_file(resume_file)
|
431 |
+
if not resume_text:
|
432 |
+
print("π Using sample resume instead...")
|
433 |
+
resume_text = get_sample_resume()
|
434 |
+
else:
|
435 |
+
print("π Using sample resume...")
|
436 |
+
resume_text = get_sample_resume()
|
437 |
+
|
438 |
+
# Get job description
|
439 |
+
job_file = input("πΌ Enter job description file path (or press Enter for sample): ").strip()
|
440 |
+
if job_file and job_file != "":
|
441 |
+
job_description = read_file(job_file)
|
442 |
+
if not job_description:
|
443 |
+
print("πΌ Using sample job description instead...")
|
444 |
+
job_description = get_sample_job_description()
|
445 |
+
else:
|
446 |
+
print("πΌ Using sample job description...")
|
447 |
+
job_description = get_sample_job_description()
|
448 |
+
|
449 |
+
# Initialize the agent
|
450 |
+
agent = ResumeAgent()
|
451 |
+
|
452 |
+
print("\nπ Starting Resume Optimization...")
|
453 |
+
print("=" * 50)
|
454 |
+
|
455 |
+
# Optimize resume
|
456 |
+
results = agent.optimize_resume(resume_text, job_description)
|
457 |
+
|
458 |
+
print("\nβ
Optimization Complete!")
|
459 |
+
print("=" * 50)
|
460 |
+
|
461 |
+
# Display results
|
462 |
+
print(f"\nπ NEW SUMMARY:")
|
463 |
+
print(results.get("new_summary", ""))
|
464 |
+
|
465 |
+
if "keyword_optimization" in results:
|
466 |
+
keyword_data = results["keyword_optimization"]
|
467 |
+
if isinstance(keyword_data, dict) and "ats_score" in keyword_data:
|
468 |
+
print(f"\nπ― ATS SCORE: {keyword_data['ats_score']}/100")
|
469 |
+
|
470 |
+
if "design_suggestions" in results:
|
471 |
+
design_data = results["design_suggestions"]
|
472 |
+
if isinstance(design_data, dict) and "recommended_template" in design_data:
|
473 |
+
print(f"\nπ¨ RECOMMENDED TEMPLATE: {design_data['recommended_template']}")
|
474 |
+
|
475 |
+
print(f"\nπ ANALYSIS COMPLETE")
|
476 |
+
print(f"Full results saved with timestamp: {results['timestamp']}")
|
477 |
+
|
478 |
+
# Save results to file
|
479 |
+
output_file = f"resume_optimization_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
480 |
+
try:
|
481 |
+
with open(output_file, 'w', encoding='utf-8') as f:
|
482 |
+
json.dump(results, f, indent=2, default=str)
|
483 |
+
print(f"πΎ Results saved to: {output_file}")
|
484 |
+
except Exception as e:
|
485 |
+
print(f"β Error saving results: {str(e)}")
|
486 |
+
|
487 |
+
return results
|
488 |
+
|
489 |
+
if __name__ == "__main__":
|
490 |
+
# Note: Replace "YOUR_GEMINI_API_KEY" with your actual API key
|
491 |
+
main()
|