Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline | |
import gradio as gr | |
import time | |
model_id = "sanket003/whisper-darpg" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, torch_dtype=torch.float32, low_cpu_mem_usage=False, use_safetensors=True | |
) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
"automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
torch_dtype=torch.float32, | |
generate_kwargs={"language": "english","task":"translate"}, | |
return_timestamps= True | |
) | |
def transcribe_audio(audio, file): | |
if audio: | |
result = pipe(audio) | |
elif file: | |
result = pipe(file) | |
pass | |
else: | |
result = {"text": "No input provided."} | |
return result["text"] | |
iface = gr.Interface( | |
title="Transforming Speech into Text", | |
fn=transcribe_audio, | |
inputs=[ | |
gr.Audio(sources="microphone", type="filepath", label="Record from Microphone"), | |
gr.File(type="filepath", label="Upload Audio File"), | |
], | |
outputs=["textbox"], | |
description="Choose either microphone input or upload an audio file.", | |
) | |
iface.launch(share=True,debug=True) |