File size: 9,943 Bytes
c9724af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfb62e1
c9724af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab72440
c9724af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import json
import os
import random
import tempfile
from typing import Any, List, Union

import gradio as gr
import numpy as np
import spaces
import torch
import trimesh
from gradio_image_prompter import ImagePrompter
from gradio_litmodel3d import LitModel3D
from huggingface_hub import snapshot_download
from PIL import Image
from skimage import measure
from transformers import AutoModelForMaskGeneration, AutoProcessor

from midi.pipelines.pipeline_midi import MIDIPipeline
from midi.utils.smoothing import smooth_gpu
from scripts.grounding_sam import plot_segmentation, segment
from scripts.inference_midi import preprocess_image, split_rgb_mask

# Constants
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
DTYPE = torch.bfloat16
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
REPO_ID = "VAST-AI/MIDI-3D"

MARKDOWN = """
## Image to 3D Scene with [MIDI-3D](https://huanngzh.github.io/MIDI-Page/)
<b>Important!</b> Please check out our [instruction video](https://github.com/user-attachments/assets/814c046e-f5c3-47cf-bb56-60154be8374c)!
1. Upload an image, and draw bounding boxes for each instance by holding and dragging the mouse. Then clik "Run Segmentation" to generate the segmentation result. <b>Ensure instances should not be too small and bounding boxes fit snugly around each instance.</b>
2. <b>Check "Do image padding" in "Generation Settings" if instances in your image are too close to the image border.</b> Then click "Run Generation" to generate a 3D scene from the image and segmentation result.
3. If you find the generated 3D scene satisfactory, download it by clicking the "Download GLB" button.
"""

EXAMPLES = [
    [
        {
            "image": "assets/example_data/Cartoon-Style/03_rgb.png",
        },
        "assets/example_data/Cartoon-Style/03_seg.png",
        42,
        False,
        False,
    ],
    [
        {
            "image": "assets/example_data/Cartoon-Style/01_rgb.png",
        },
        "assets/example_data/Cartoon-Style/01_seg.png",
        42,
        False,
        False,
    ],
    [
        {
            "image": "assets/example_data/Realistic-Style/02_rgb.png",
        },
        "assets/example_data/Realistic-Style/02_seg.png",
        42,
        False,
        False,
    ],
    [
        {
            "image": "assets/example_data/Cartoon-Style/00_rgb.png",
        },
        "assets/example_data/Cartoon-Style/00_seg.png",
        42,
        False,
        False,
    ],
    [
        {
            "image": "assets/example_data/Realistic-Style/00_rgb.png",
        },
        "assets/example_data/Realistic-Style/00_seg.png",
        42,
        False,
        True,
    ],
    [
        {
            "image": "assets/example_data/Realistic-Style/01_rgb.png",
        },
        "assets/example_data/Realistic-Style/01_seg.png",
        42,
        False,
        True,
    ],
    [
        {
            "image": "assets/example_data/Realistic-Style/05_rgb.png",
        },
        "assets/example_data/Realistic-Style/05_seg.png",
        42,
        False,
        False,
    ],
]

os.makedirs(TMP_DIR, exist_ok=True)

# Prepare models
## Grounding SAM
segmenter_id = "facebook/sam-vit-base"
sam_processor = AutoProcessor.from_pretrained(segmenter_id)
sam_segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(
    DEVICE, DTYPE
)
## MIDI-3D
local_dir = "pretrained_weights/MIDI-3D"
snapshot_download(repo_id=REPO_ID, local_dir=local_dir)
pipe: MIDIPipeline = MIDIPipeline.from_pretrained(local_dir).to(DEVICE, DTYPE)
pipe.init_custom_adapter(
    set_self_attn_module_names=[
        "blocks.8",
        "blocks.9",
        "blocks.10",
        "blocks.11",
        "blocks.12",
    ]
)


# Utils
def get_random_hex():
    random_bytes = os.urandom(8)
    random_hex = random_bytes.hex()
    return random_hex


@spaces.GPU()
@torch.no_grad()
@torch.autocast(device_type=DEVICE, dtype=torch.bfloat16)
def run_segmentation(image_prompts: Any, polygon_refinement: bool) -> Image.Image:
    rgb_image = image_prompts["image"].convert("RGB")

    # pre-process the layers and get the xyxy boxes of each layer
    if len(image_prompts["points"]) == 0:
        gr.Error("Please draw bounding boxes for each instance on the image.")
    boxes = [
        [
            [int(box[0]), int(box[1]), int(box[3]), int(box[4])]
            for box in image_prompts["points"]
        ]
    ]

    # run the segmentation
    detections = segment(
        sam_processor,
        sam_segmentator,
        rgb_image,
        boxes=[boxes],
        polygon_refinement=polygon_refinement,
    )
    seg_map_pil = plot_segmentation(rgb_image, detections)

    torch.cuda.empty_cache()

    return seg_map_pil


@torch.no_grad()
def run_midi(
    pipe: Any,
    rgb_image: Union[str, Image.Image],
    seg_image: Union[str, Image.Image],
    seed: int,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.0,
    do_image_padding: bool = False,
) -> trimesh.Scene:
    if do_image_padding:
        rgb_image, seg_image = preprocess_image(rgb_image, seg_image)
    instance_rgbs, instance_masks, scene_rgbs = split_rgb_mask(rgb_image, seg_image)

    num_instances = len(instance_rgbs)
    outputs = pipe(
        image=instance_rgbs,
        mask=instance_masks,
        image_scene=scene_rgbs,
        attention_kwargs={"num_instances": num_instances},
        generator=torch.Generator(device=pipe.device).manual_seed(seed),
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        decode_progressive=True,
        return_dict=False,
    )

    return outputs


@spaces.GPU(duration=180)
@torch.no_grad()
@torch.autocast(device_type=DEVICE, dtype=torch.bfloat16)
def run_generation(
    rgb_image: Any,
    seg_image: Union[str, Image.Image],
    seed: int,
    randomize_seed: bool = False,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.0,
    do_image_padding: bool = False,
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    if not isinstance(rgb_image, Image.Image) and "image" in rgb_image:
        rgb_image = rgb_image["image"]

    outputs = run_midi(
        pipe,
        rgb_image,
        seg_image,
        seed,
        num_inference_steps,
        guidance_scale,
        do_image_padding,
    )

    # marching cubes
    trimeshes = []
    for _, (logits_, grid_size, bbox_size, bbox_min, bbox_max) in enumerate(
        zip(*outputs)
    ):
        grid_logits = logits_.view(grid_size)
        grid_logits = smooth_gpu(grid_logits, method="gaussian", sigma=1)
        torch.cuda.empty_cache()
        vertices, faces, normals, _ = measure.marching_cubes(
            grid_logits.float().cpu().numpy(), 0, method="lewiner"
        )
        vertices = vertices / grid_size * bbox_size + bbox_min

        # Trimesh
        mesh = trimesh.Trimesh(vertices.astype(np.float32), np.ascontiguousarray(faces))
        trimeshes.append(mesh)

    # compose the output meshes
    scene = trimesh.Scene(trimeshes)

    tmp_path = os.path.join(TMP_DIR, f"midi3d_{get_random_hex()}.glb")
    scene.export(tmp_path)

    torch.cuda.empty_cache()

    return tmp_path, tmp_path, seed


# Demo
with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)

    with gr.Row():
        with gr.Column():
            with gr.Row():
                image_prompts = ImagePrompter(label="Input Image", type="pil")
                seg_image = gr.Image(
                    label="Segmentation Result", type="pil", format="png"
                )

            with gr.Accordion("Segmentation Settings", open=False):
                polygon_refinement = gr.Checkbox(
                    label="Polygon Refinement", value=False
                )
            seg_button = gr.Button("Run Segmentation")

            with gr.Accordion("Generation Settings", open=False):
                do_image_padding = gr.Checkbox(label="Do image padding", value=False)
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=50,
                )
                guidance_scale = gr.Slider(
                    label="CFG scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=7.0,
                )
            gen_button = gr.Button("Run Generation", variant="primary")

        with gr.Column():
            model_output = LitModel3D(label="Generated GLB", exposure=1.0, height=500)
            download_glb = gr.DownloadButton(label="Download GLB", interactive=False)

    with gr.Row():
        gr.Examples(
            examples=EXAMPLES,
            fn=run_generation,
            inputs=[image_prompts, seg_image, seed, randomize_seed, do_image_padding],
            outputs=[model_output, download_glb, seed],
            cache_examples=False,
        )

    seg_button.click(
        run_segmentation,
        inputs=[
            image_prompts,
            polygon_refinement,
        ],
        outputs=[seg_image],
    ).then(lambda: gr.Button(interactive=True), outputs=[gen_button])

    gen_button.click(
        run_generation,
        inputs=[
            image_prompts,
            seg_image,
            seed,
            randomize_seed,
            num_inference_steps,
            guidance_scale,
            do_image_padding,
        ],
        outputs=[model_output, download_glb, seed],
    ).then(lambda: gr.Button(interactive=True), outputs=[download_glb])


demo.launch()