Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,121 Bytes
c9724af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention_processor import Attention, AttentionProcessor
from diffusers.models.autoencoders.vae import DecoderOutput
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import FP32LayerNorm, LayerNorm
from diffusers.utils import logging
from diffusers.utils.accelerate_utils import apply_forward_hook
from einops import repeat
from tqdm import tqdm
from torch_cluster import fps
from ..attention_processor import FusedTripoSGAttnProcessor2_0, TripoSGAttnProcessor2_0
from ..embeddings import FrequencyPositionalEmbedding
from ..transformers.triposg_transformer import DiTBlock
from .vae import DiagonalGaussianDistribution
import subprocess
import sys
def install_package(package_name):
try:
subprocess.check_call([sys.executable, "-m", "pip", "install", package_name])
return True
except subprocess.CalledProcessError:
return False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class TripoSGEncoder(nn.Module):
def __init__(
self,
in_channels: int = 3,
dim: int = 512,
num_attention_heads: int = 8,
num_layers: int = 8,
):
super().__init__()
self.proj_in = nn.Linear(in_channels, dim, bias=True)
self.blocks = nn.ModuleList(
[
DiTBlock(
dim=dim,
num_attention_heads=num_attention_heads,
use_self_attention=False,
use_cross_attention=True,
cross_attention_dim=dim,
cross_attention_norm_type="layer_norm",
activation_fn="gelu",
norm_type="fp32_layer_norm",
norm_eps=1e-5,
qk_norm=False,
qkv_bias=False,
) # cross attention
]
+ [
DiTBlock(
dim=dim,
num_attention_heads=num_attention_heads,
use_self_attention=True,
self_attention_norm_type="fp32_layer_norm",
use_cross_attention=False,
use_cross_attention_2=False,
activation_fn="gelu",
norm_type="fp32_layer_norm",
norm_eps=1e-5,
qk_norm=False,
qkv_bias=False,
)
for _ in range(num_layers) # self attention
]
)
self.norm_out = LayerNorm(dim)
def forward(self, sample_1: torch.Tensor, sample_2: torch.Tensor):
hidden_states = self.proj_in(sample_1)
encoder_hidden_states = self.proj_in(sample_2)
for layer, block in enumerate(self.blocks):
if layer == 0:
hidden_states = block(
hidden_states, encoder_hidden_states=encoder_hidden_states
)
else:
hidden_states = block(hidden_states)
hidden_states = self.norm_out(hidden_states)
return hidden_states
class TripoSGDecoder(nn.Module):
def __init__(
self,
in_channels: int = 3,
out_channels: int = 1,
dim: int = 512,
num_attention_heads: int = 8,
num_layers: int = 16,
grad_type: str = "analytical",
grad_interval: float = 0.001,
):
super().__init__()
if grad_type not in ["numerical", "analytical"]:
raise ValueError(f"grad_type must be one of ['numerical', 'analytical']")
self.grad_type = grad_type
self.grad_interval = grad_interval
self.blocks = nn.ModuleList(
[
DiTBlock(
dim=dim,
num_attention_heads=num_attention_heads,
use_self_attention=True,
self_attention_norm_type="fp32_layer_norm",
use_cross_attention=False,
use_cross_attention_2=False,
activation_fn="gelu",
norm_type="fp32_layer_norm",
norm_eps=1e-5,
qk_norm=False,
qkv_bias=False,
)
for _ in range(num_layers) # self attention
]
+ [
DiTBlock(
dim=dim,
num_attention_heads=num_attention_heads,
use_self_attention=False,
use_cross_attention=True,
cross_attention_dim=dim,
cross_attention_norm_type="layer_norm",
activation_fn="gelu",
norm_type="fp32_layer_norm",
norm_eps=1e-5,
qk_norm=False,
qkv_bias=False,
) # cross attention
]
)
self.proj_query = nn.Linear(in_channels, dim, bias=True)
self.norm_out = LayerNorm(dim)
self.proj_out = nn.Linear(dim, out_channels, bias=True)
def query_geometry(
self,
model_fn: callable,
queries: torch.Tensor,
sample: torch.Tensor,
grad: bool = False,
):
logits = model_fn(queries, sample)
if grad:
with torch.autocast(device_type="cuda", dtype=torch.float32):
if self.grad_type == "numerical":
interval = self.grad_interval
grad_value = []
for offset in [
(interval, 0, 0),
(0, interval, 0),
(0, 0, interval),
]:
offset_tensor = torch.tensor(offset, device=queries.device)[
None, :
]
res_p = model_fn(queries + offset_tensor, sample)[..., 0]
res_n = model_fn(queries - offset_tensor, sample)[..., 0]
grad_value.append((res_p - res_n) / (2 * interval))
grad_value = torch.stack(grad_value, dim=-1)
else:
queries_d = torch.clone(queries)
queries_d.requires_grad = True
with torch.enable_grad():
res_d = model_fn(queries_d, sample)
grad_value = torch.autograd.grad(
res_d,
[queries_d],
grad_outputs=torch.ones_like(res_d),
create_graph=self.training,
)[0]
else:
grad_value = None
return logits, grad_value
def forward(
self,
sample: torch.Tensor,
queries: torch.Tensor,
kv_cache: Optional[torch.Tensor] = None,
):
if kv_cache is None:
hidden_states = sample
for _, block in enumerate(self.blocks[:-1]):
hidden_states = block(hidden_states)
kv_cache = hidden_states
# query grid logits by cross attention
def query_fn(q, kv):
q = self.proj_query(q)
l = self.blocks[-1](q, encoder_hidden_states=kv)
return self.proj_out(self.norm_out(l))
logits, grad = self.query_geometry(
query_fn, queries, kv_cache, grad=self.training
)
logits = logits * -1 if not isinstance(logits, Tuple) else logits[0] * -1
return logits, kv_cache
class TripoSGVAEModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
in_channels: int = 3, # NOTE xyz instead of feature dim
latent_channels: int = 64,
num_attention_heads: int = 8,
width_encoder: int = 512,
width_decoder: int = 1024,
num_layers_encoder: int = 8,
num_layers_decoder: int = 16,
embedding_type: str = "frequency",
embed_frequency: int = 8,
embed_include_pi: bool = False,
):
super().__init__()
self.out_channels = 1
if embedding_type == "frequency":
self.embedder = FrequencyPositionalEmbedding(
num_freqs=embed_frequency,
logspace=True,
input_dim=in_channels,
include_pi=embed_include_pi,
)
else:
raise NotImplementedError(
f"Embedding type {embedding_type} is not supported."
)
self.encoder = TripoSGEncoder(
in_channels=in_channels + self.embedder.out_dim,
dim=width_encoder,
num_attention_heads=num_attention_heads,
num_layers=num_layers_encoder,
)
self.decoder = TripoSGDecoder(
in_channels=self.embedder.out_dim,
out_channels=self.out_channels,
dim=width_decoder,
num_attention_heads=num_attention_heads,
num_layers=num_layers_decoder,
)
self.quant = nn.Linear(width_encoder, latent_channels * 2, bias=True)
self.post_quant = nn.Linear(latent_channels, width_decoder, bias=True)
self.use_slicing = False
self.slicing_length = 1
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedTripoSGAttnProcessor2_0
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError(
"`fuse_qkv_projections()` is not supported for models having added KV projections."
)
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
self.set_attn_processor(FusedTripoSGAttnProcessor2_0())
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(
name: str,
module: torch.nn.Module,
processors: Dict[str, AttentionProcessor],
):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
self.set_attn_processor(TripoSGAttnProcessor2_0())
def enable_slicing(self, slicing_length: int = 1) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
self.slicing_length = slicing_length
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def _sample_features(
self, x: torch.Tensor, num_tokens: int = 2048, seed: Optional[int] = None
):
"""
Sample points from features of the input point cloud.
Args:
x (torch.Tensor): The input point cloud. shape: (B, N, C)
num_tokens (int, optional): The number of points to sample. Defaults to 2048.
seed (Optional[int], optional): The random seed. Defaults to None.
"""
rng = np.random.default_rng(seed)
indices = rng.choice(
x.shape[1], num_tokens * 4, replace=num_tokens * 4 > x.shape[1]
)
selected_points = x[:, indices]
batch_size, num_points, num_channels = selected_points.shape
flattened_points = selected_points.view(batch_size * num_points, num_channels)
batch_indices = (
torch.arange(batch_size).to(x.device).repeat_interleave(num_points)
)
# fps sampling
sampling_ratio = 1.0 / 4
sampled_indices = fps(
flattened_points[:, :3],
batch_indices,
ratio=sampling_ratio,
random_start=self.training,
)
sampled_points = flattened_points[sampled_indices].view(
batch_size, -1, num_channels
)
return sampled_points
def _encode(
self, x: torch.Tensor, num_tokens: int = 2048, seed: Optional[int] = None
):
position_channels = self.config.in_channels
positions, features = x[..., :position_channels], x[..., position_channels:]
x_kv = torch.cat([self.embedder(positions), features], dim=-1)
sampled_x = self._sample_features(x, num_tokens, seed)
positions, features = (
sampled_x[..., :position_channels],
sampled_x[..., position_channels:],
)
x_q = torch.cat([self.embedder(positions), features], dim=-1)
x = self.encoder(x_q, x_kv)
x = self.quant(x)
return x
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True, **kwargs
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
"""
Encode a batch of point features into latents.
"""
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [
self._encode(x_slice, **kwargs)
for x_slice in x.split(self.slicing_length)
]
h = torch.cat(encoded_slices)
else:
h = self._encode(x, **kwargs)
posterior = DiagonalGaussianDistribution(h, feature_dim=-1)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(
self,
z: torch.Tensor,
sampled_points: torch.Tensor,
num_chunks: int = 50000,
to_cpu: bool = False,
return_dict: bool = True,
) -> Union[DecoderOutput, torch.Tensor]:
xyz_samples = sampled_points
z = self.post_quant(z)
num_points = xyz_samples.shape[1]
kv_cache = None
dec = []
for i in range(0, num_points, num_chunks):
queries = xyz_samples[:, i : i + num_chunks, :].to(z.device, dtype=z.dtype)
queries = self.embedder(queries)
z_, kv_cache = self.decoder(z, queries, kv_cache)
dec.append(z_ if not to_cpu else z_.cpu())
z = torch.cat(dec, dim=1)
if not return_dict:
return (z,)
return DecoderOutput(sample=z)
@apply_forward_hook
def decode(
self,
z: torch.Tensor,
sampled_points: torch.Tensor,
return_dict: bool = True,
**kwargs,
) -> Union[DecoderOutput, torch.Tensor]:
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [
self._decode(z_slice, p_slice, **kwargs).sample
for z_slice, p_slice in zip(
z.split(self.slicing_length),
sampled_points.split(self.slicing_length),
)
]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z, sampled_points, **kwargs).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def forward(self, x: torch.Tensor):
pass
|