Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,709 Bytes
c9724af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
# Copyright 2024 HunyuanDiT Authors, Qixun Wang and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import Attention, AttentionProcessor
from diffusers.models.embeddings import (
GaussianFourierProjection,
TimestepEmbedding,
Timesteps,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import (
AdaLayerNormContinuous,
FP32LayerNorm,
LayerNorm,
)
from diffusers.utils import (
USE_PEFT_BACKEND,
is_torch_version,
logging,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import maybe_allow_in_graph
from torch import nn
from ..attention_processor import FusedTripoSGAttnProcessor2_0, TripoSGAttnProcessor2_0
from .modeling_outputs import Transformer1DModelOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@maybe_allow_in_graph
class DiTBlock(nn.Module):
r"""
Transformer block used in Hunyuan-DiT model (https://github.com/Tencent/HunyuanDiT). Allow skip connection and
QKNorm
Parameters:
dim (`int`):
The number of channels in the input and output.
num_attention_heads (`int`):
The number of headsto use for multi-head attention.
cross_attention_dim (`int`,*optional*):
The size of the encoder_hidden_states vector for cross attention.
dropout(`float`, *optional*, defaults to 0.0):
The dropout probability to use.
activation_fn (`str`,*optional*, defaults to `"geglu"`):
Activation function to be used in feed-forward. .
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_eps (`float`, *optional*, defaults to 1e-6):
A small constant added to the denominator in normalization layers to prevent division by zero.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
ff_inner_dim (`int`, *optional*):
The size of the hidden layer in the feed-forward block. Defaults to `None`.
ff_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in the feed-forward block.
skip (`bool`, *optional*, defaults to `False`):
Whether to use skip connection. Defaults to `False` for down-blocks and mid-blocks.
qk_norm (`bool`, *optional*, defaults to `True`):
Whether to use normalization in QK calculation. Defaults to `True`.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
use_self_attention: bool = True,
use_cross_attention: bool = False,
self_attention_norm_type: Optional[str] = None, # ada layer norm
cross_attention_dim: Optional[int] = None,
cross_attention_norm_type: Optional[str] = "fp32_layer_norm",
# parallel second cross attention
use_cross_attention_2: bool = False,
cross_attention_2_dim: Optional[int] = None,
cross_attention_2_norm_type: Optional[str] = None,
dropout=0.0,
activation_fn: str = "gelu",
norm_type: str = "fp32_layer_norm", # TODO
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
final_dropout: bool = False,
ff_inner_dim: Optional[int] = None, # int(dim * 4) if None
ff_bias: bool = True,
skip: bool = False,
skip_concat_front: bool = False, # [x, skip] or [skip, x]
skip_norm_last: bool = False, # this is an error
qk_norm: bool = True,
qkv_bias: bool = True,
):
super().__init__()
self.use_self_attention = use_self_attention
self.use_cross_attention = use_cross_attention
self.use_cross_attention_2 = use_cross_attention_2
self.skip_concat_front = skip_concat_front
self.skip_norm_last = skip_norm_last
# Define 3 blocks. Each block has its own normalization layer.
# NOTE: when new version comes, check norm2 and norm 3
# 1. Self-Attn
if use_self_attention:
if (
self_attention_norm_type == "fp32_layer_norm"
or self_attention_norm_type is None
):
self.norm1 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
else:
raise NotImplementedError
self.attn1 = Attention(
query_dim=dim,
cross_attention_dim=None,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
qk_norm="rms_norm" if qk_norm else None,
eps=1e-6,
bias=qkv_bias,
processor=TripoSGAttnProcessor2_0(),
)
# 2. Cross-Attn
if use_cross_attention:
assert cross_attention_dim is not None
self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.attn2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
qk_norm="rms_norm" if qk_norm else None,
cross_attention_norm=cross_attention_norm_type,
eps=1e-6,
bias=qkv_bias,
processor=TripoSGAttnProcessor2_0(),
)
# 2'. Parallel Second Cross-Attn
if use_cross_attention_2:
assert cross_attention_2_dim is not None
self.norm2_2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.attn2_2 = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_2_dim,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
qk_norm="rms_norm" if qk_norm else None,
cross_attention_norm=cross_attention_2_norm_type,
eps=1e-6,
bias=qkv_bias,
processor=TripoSGAttnProcessor2_0(),
)
# 3. Feed-forward
self.norm3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine)
self.ff = FeedForward(
dim,
dropout=dropout, ### 0.0
activation_fn=activation_fn, ### approx GeLU
final_dropout=final_dropout, ### 0.0
inner_dim=ff_inner_dim, ### int(dim * mlp_ratio)
bias=ff_bias,
)
# 4. Skip Connection
if skip:
self.skip_norm = FP32LayerNorm(dim, norm_eps, elementwise_affine=True)
self.skip_linear = nn.Linear(2 * dim, dim)
else:
self.skip_linear = None
# let chunk size default to None
self._chunk_size = None
self._chunk_dim = 0
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
# Sets chunk feed-forward
self._chunk_size = chunk_size
self._chunk_dim = dim
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_hidden_states_2: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
skip: Optional[torch.Tensor] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> torch.Tensor:
# Prepare attention kwargs
attention_kwargs = attention_kwargs or {}
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Long Skip Connection
if self.skip_linear is not None:
cat = torch.cat(
(
[skip, hidden_states]
if self.skip_concat_front
else [hidden_states, skip]
),
dim=-1,
)
if self.skip_norm_last:
# don't do this
hidden_states = self.skip_linear(cat)
hidden_states = self.skip_norm(hidden_states)
else:
cat = self.skip_norm(cat)
hidden_states = self.skip_linear(cat)
# 1. Self-Attention
if self.use_self_attention:
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn1(
norm_hidden_states,
image_rotary_emb=image_rotary_emb,
**attention_kwargs,
)
hidden_states = hidden_states + attn_output
# 2. Cross-Attention
if self.use_cross_attention:
if self.use_cross_attention_2:
hidden_states = (
hidden_states
+ self.attn2(
self.norm2(hidden_states),
encoder_hidden_states=encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
**attention_kwargs,
)
+ self.attn2_2(
self.norm2_2(hidden_states),
encoder_hidden_states=encoder_hidden_states_2,
image_rotary_emb=image_rotary_emb,
**attention_kwargs,
)
)
else:
hidden_states = hidden_states + self.attn2(
self.norm2(hidden_states),
encoder_hidden_states=encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
**attention_kwargs,
)
# FFN Layer ### TODO: switch norm2 and norm3 in the state dict
mlp_inputs = self.norm3(hidden_states)
hidden_states = hidden_states + self.ff(mlp_inputs)
return hidden_states
class TripoSGDiTModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
"""
TripoSG: Diffusion model with a Transformer backbone.
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16):
The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88):
The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
patch_size (`int`, *optional*):
The size of the patch to use for the input.
activation_fn (`str`, *optional*, defaults to `"geglu"`):
Activation function to use in feed-forward.
sample_size (`int`, *optional*):
The width of the latent images. This is fixed during training since it is used to learn a number of
position embeddings.
dropout (`float`, *optional*, defaults to 0.0):
The dropout probability to use.
cross_attention_dim (`int`, *optional*):
The number of dimension in the clip text embedding.
hidden_size (`int`, *optional*):
The size of hidden layer in the conditioning embedding layers.
num_layers (`int`, *optional*, defaults to 1):
The number of layers of Transformer blocks to use.
mlp_ratio (`float`, *optional*, defaults to 4.0):
The ratio of the hidden layer size to the input size.
learn_sigma (`bool`, *optional*, defaults to `True`):
Whether to predict variance.
cross_attention_dim_t5 (`int`, *optional*):
The number dimensions in t5 text embedding.
pooled_projection_dim (`int`, *optional*):
The size of the pooled projection.
text_len (`int`, *optional*):
The length of the clip text embedding.
text_len_t5 (`int`, *optional*):
The length of the T5 text embedding.
use_style_cond_and_image_meta_size (`bool`, *optional*):
Whether or not to use style condition and image meta size. True for version <=1.1, False for version >= 1.2
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
width: int = 2048,
in_channels: int = 64,
num_layers: int = 21,
cross_attention_dim: int = 768,
cross_attention_2_dim: int = 1024,
):
super().__init__()
self.out_channels = in_channels
self.num_heads = num_attention_heads
self.inner_dim = width
self.mlp_ratio = 4.0
time_embed_dim, timestep_input_dim = self._set_time_proj(
"positional",
inner_dim=self.inner_dim,
flip_sin_to_cos=False,
freq_shift=0,
time_embedding_dim=None,
)
self.time_proj = TimestepEmbedding(
timestep_input_dim, time_embed_dim, act_fn="gelu", out_dim=self.inner_dim
)
self.proj_in = nn.Linear(self.config.in_channels, self.inner_dim, bias=True)
self.blocks = nn.ModuleList(
[
DiTBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
use_self_attention=True,
use_cross_attention=True,
self_attention_norm_type="fp32_layer_norm",
cross_attention_dim=self.config.cross_attention_dim,
cross_attention_norm_type=None,
use_cross_attention_2=True,
cross_attention_2_dim=self.config.cross_attention_2_dim,
cross_attention_2_norm_type=None,
activation_fn="gelu",
norm_type="fp32_layer_norm", # TODO
norm_eps=1e-5,
ff_inner_dim=int(self.inner_dim * self.mlp_ratio),
skip=layer > num_layers // 2,
skip_concat_front=True,
skip_norm_last=True, # this is an error
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details.
qkv_bias=False,
)
for layer in range(num_layers)
]
)
self.norm_out = LayerNorm(self.inner_dim)
self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=True)
self.gradient_checkpointing = False
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
def _set_time_proj(
self,
time_embedding_type: str,
inner_dim: int,
flip_sin_to_cos: bool,
freq_shift: float,
time_embedding_dim: int,
) -> Tuple[int, int]:
if time_embedding_type == "fourier":
time_embed_dim = time_embedding_dim or inner_dim * 2
if time_embed_dim % 2 != 0:
raise ValueError(
f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}."
)
self.time_embed = GaussianFourierProjection(
time_embed_dim // 2,
set_W_to_weight=False,
log=False,
flip_sin_to_cos=flip_sin_to_cos,
)
timestep_input_dim = time_embed_dim
elif time_embedding_type == "positional":
time_embed_dim = time_embedding_dim or inner_dim * 4
self.time_embed = Timesteps(inner_dim, flip_sin_to_cos, freq_shift)
timestep_input_dim = inner_dim
else:
raise ValueError(
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
)
return time_embed_dim, timestep_input_dim
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedTripoSGAttnProcessor2_0
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError(
"`fuse_qkv_projections()` is not supported for models having added KV projections."
)
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
self.set_attn_processor(FusedTripoSGAttnProcessor2_0())
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
@property
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(
name: str,
module: torch.nn.Module,
processors: Dict[str, AttentionProcessor],
):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor()
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
self.set_attn_processor(TripoSGAttnProcessor2_0())
def forward(
self,
hidden_states: Optional[torch.Tensor],
timestep: Union[int, float, torch.LongTensor],
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_hidden_states_2: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
):
"""
The [`HunyuanDiT2DModel`] forward method.
Args:
hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`):
The input tensor.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step.
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer.
encoder_hidden_states_2 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer.
return_dict: bool
Whether to return a dictionary.
"""
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if (
attention_kwargs is not None
and attention_kwargs.get("scale", None) is not None
):
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
_, N, _ = hidden_states.shape
temb = self.time_embed(timestep).to(hidden_states.dtype)
temb = self.time_proj(temb)
temb = temb.unsqueeze(dim=1) # unsqueeze to concat with hidden_states
hidden_states = self.proj_in(hidden_states)
# N + 1 token
hidden_states = torch.cat([temb, hidden_states], dim=1)
skips = []
for layer, block in enumerate(self.blocks):
skip = None if layer <= self.config.num_layers // 2 else skips.pop()
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = (
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
encoder_hidden_states_2,
temb,
image_rotary_emb,
skip,
attention_kwargs,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_2=encoder_hidden_states_2,
temb=temb,
image_rotary_emb=image_rotary_emb,
skip=skip,
attention_kwargs=attention_kwargs,
) # (N, L, D)
if layer < self.config.num_layers // 2:
skips.append(hidden_states)
# final layer
hidden_states = self.norm_out(hidden_states)
hidden_states = hidden_states[:, -N:]
hidden_states = self.proj_out(hidden_states)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (hidden_states,)
return Transformer1DModelOutput(sample=hidden_states)
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
def enable_forward_chunking(
self, chunk_size: Optional[int] = None, dim: int = 0
) -> None:
"""
Sets the attention processor to use [feed forward
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
Parameters:
chunk_size (`int`, *optional*):
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
over each tensor of dim=`dim`.
dim (`int`, *optional*, defaults to `0`):
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
or dim=1 (sequence length).
"""
if dim not in [0, 1]:
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
# By default chunk size is 1
chunk_size = chunk_size or 1
def fn_recursive_feed_forward(
module: torch.nn.Module, chunk_size: int, dim: int
):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, chunk_size, dim)
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
def disable_forward_chunking(self):
def fn_recursive_feed_forward(
module: torch.nn.Module, chunk_size: int, dim: int
):
if hasattr(module, "set_chunk_feed_forward"):
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
for child in module.children():
fn_recursive_feed_forward(child, chunk_size, dim)
for module in self.children():
fn_recursive_feed_forward(module, None, 0)
|