File size: 19,551 Bytes
c9724af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
# -*- coding: utf-8 -*-

"""
Utilities for smoothing the occ/sdf grids.
"""

import logging
from typing import Tuple

import numpy as np
import torch
import torch.nn.functional as F
from scipy import ndimage as ndi
from scipy import sparse

__all__ = [
    "smooth",
    "smooth_constrained",
    "smooth_gaussian",
    "signed_distance_function",
    "smooth_gpu",
    "smooth_constrained_gpu",
    "smooth_gaussian_gpu",
    "signed_distance_function_gpu",
]


def _build_variable_indices(band: np.ndarray) -> np.ndarray:
    num_variables = np.count_nonzero(band)
    variable_indices = np.full(band.shape, -1, dtype=np.int_)
    variable_indices[band] = np.arange(num_variables)
    return variable_indices


def _buildq3d(variable_indices: np.ndarray):
    """
    Builds the filterq matrix for the given variables.
    """

    num_variables = variable_indices.max() + 1
    filterq = sparse.lil_matrix((3 * num_variables, num_variables))

    # Pad variable_indices to simplify out-of-bounds accesses
    variable_indices = np.pad(
        variable_indices, [(0, 1), (0, 1), (0, 1)], mode="constant", constant_values=-1
    )

    coords = np.nonzero(variable_indices >= 0)
    for count, (i, j, k) in enumerate(zip(*coords)):

        assert variable_indices[i, j, k] == count

        filterq[3 * count, count] = -2
        neighbor = variable_indices[i - 1, j, k]
        if neighbor >= 0:
            filterq[3 * count, neighbor] = 1
        else:
            filterq[3 * count, count] += 1

        neighbor = variable_indices[i + 1, j, k]
        if neighbor >= 0:
            filterq[3 * count, neighbor] = 1
        else:
            filterq[3 * count, count] += 1

        filterq[3 * count + 1, count] = -2
        neighbor = variable_indices[i, j - 1, k]
        if neighbor >= 0:
            filterq[3 * count + 1, neighbor] = 1
        else:
            filterq[3 * count + 1, count] += 1

        neighbor = variable_indices[i, j + 1, k]
        if neighbor >= 0:
            filterq[3 * count + 1, neighbor] = 1
        else:
            filterq[3 * count + 1, count] += 1

        filterq[3 * count + 2, count] = -2
        neighbor = variable_indices[i, j, k - 1]
        if neighbor >= 0:
            filterq[3 * count + 2, neighbor] = 1
        else:
            filterq[3 * count + 2, count] += 1

        neighbor = variable_indices[i, j, k + 1]
        if neighbor >= 0:
            filterq[3 * count + 2, neighbor] = 1
        else:
            filterq[3 * count + 2, count] += 1

    filterq = filterq.tocsr()
    return filterq.T.dot(filterq)


def _buildq3d_gpu(variable_indices: torch.Tensor, chunk_size=10000):
    """
    Builds the filterq matrix for the given variables on GPU, using chunking to reduce memory usage.
    """
    device = variable_indices.device
    num_variables = variable_indices.max().item() + 1

    # Pad variable_indices to simplify out-of-bounds accesses
    variable_indices = torch.nn.functional.pad(
        variable_indices, (0, 1, 0, 1, 0, 1), mode="constant", value=-1
    )

    coords = torch.nonzero(variable_indices >= 0)
    i, j, k = coords[:, 0], coords[:, 1], coords[:, 2]

    # Function to process a chunk of data
    def process_chunk(start, end):
        row_indices = []
        col_indices = []
        values = []

        for axis in range(3):
            row_indices.append(3 * torch.arange(start, end, device=device) + axis)
            col_indices.append(
                variable_indices[i[start:end], j[start:end], k[start:end]]
            )
            values.append(torch.full((end - start,), -2, device=device))

            for offset in [-1, 1]:
                if axis == 0:
                    neighbor = variable_indices[
                        i[start:end] + offset, j[start:end], k[start:end]
                    ]
                elif axis == 1:
                    neighbor = variable_indices[
                        i[start:end], j[start:end] + offset, k[start:end]
                    ]
                else:
                    neighbor = variable_indices[
                        i[start:end], j[start:end], k[start:end] + offset
                    ]

                mask = neighbor >= 0
                row_indices.append(
                    3 * torch.arange(start, end, device=device)[mask] + axis
                )
                col_indices.append(neighbor[mask])
                values.append(torch.ones(mask.sum(), device=device))

                # Add 1 to the diagonal for out-of-bounds neighbors
                row_indices.append(
                    3 * torch.arange(start, end, device=device)[~mask] + axis
                )
                col_indices.append(
                    variable_indices[i[start:end], j[start:end], k[start:end]][~mask]
                )
                values.append(torch.ones((~mask).sum(), device=device))

        return torch.cat(row_indices), torch.cat(col_indices), torch.cat(values)

    # Process data in chunks
    all_row_indices = []
    all_col_indices = []
    all_values = []

    for start in range(0, coords.shape[0], chunk_size):
        end = min(start + chunk_size, coords.shape[0])
        row_indices, col_indices, values = process_chunk(start, end)
        all_row_indices.append(row_indices)
        all_col_indices.append(col_indices)
        all_values.append(values)

    # Concatenate all chunks
    row_indices = torch.cat(all_row_indices)
    col_indices = torch.cat(all_col_indices)
    values = torch.cat(all_values)

    # Create sparse tensor
    indices = torch.stack([row_indices, col_indices])
    filterq = torch.sparse_coo_tensor(
        indices, values, (3 * num_variables, num_variables)
    )

    # Compute filterq.T @ filterq
    return torch.sparse.mm(filterq.t(), filterq)


# Usage example:
# variable_indices = torch.tensor(...).cuda()  # Your input tensor on GPU
# result = _buildq3d_gpu(variable_indices)


def _buildq2d(variable_indices: np.ndarray):
    """
    Builds the filterq matrix for the given variables.

    Version for 2 dimensions.
    """

    num_variables = variable_indices.max() + 1
    filterq = sparse.lil_matrix((3 * num_variables, num_variables))

    # Pad variable_indices to simplify out-of-bounds accesses
    variable_indices = np.pad(
        variable_indices, [(0, 1), (0, 1)], mode="constant", constant_values=-1
    )

    coords = np.nonzero(variable_indices >= 0)
    for count, (i, j) in enumerate(zip(*coords)):
        assert variable_indices[i, j] == count

        filterq[2 * count, count] = -2
        neighbor = variable_indices[i - 1, j]
        if neighbor >= 0:
            filterq[2 * count, neighbor] = 1
        else:
            filterq[2 * count, count] += 1

        neighbor = variable_indices[i + 1, j]
        if neighbor >= 0:
            filterq[2 * count, neighbor] = 1
        else:
            filterq[2 * count, count] += 1

        filterq[2 * count + 1, count] = -2
        neighbor = variable_indices[i, j - 1]
        if neighbor >= 0:
            filterq[2 * count + 1, neighbor] = 1
        else:
            filterq[2 * count + 1, count] += 1

        neighbor = variable_indices[i, j + 1]
        if neighbor >= 0:
            filterq[2 * count + 1, neighbor] = 1
        else:
            filterq[2 * count + 1, count] += 1

    filterq = filterq.tocsr()
    return filterq.T.dot(filterq)


def _jacobi(
    filterq,
    x0: np.ndarray,
    lower_bound: np.ndarray,
    upper_bound: np.ndarray,
    max_iters: int = 10,
    rel_tol: float = 1e-6,
    weight: float = 0.5,
):
    """Jacobi method with constraints."""

    jacobi_r = sparse.lil_matrix(filterq)
    shp = jacobi_r.shape
    jacobi_d = 1.0 / filterq.diagonal()
    jacobi_r.setdiag((0,) * shp[0])
    jacobi_r = jacobi_r.tocsr()

    x = x0

    # We check the stopping criterion each 10 iterations
    check_each = 10
    cum_rel_tol = 1 - (1 - rel_tol) ** check_each

    energy_now = np.dot(x, filterq.dot(x)) / 2
    logging.info("Energy at iter %d: %.6g", 0, energy_now)
    for i in range(max_iters):

        x_1 = -jacobi_d * jacobi_r.dot(x)
        x = weight * x_1 + (1 - weight) * x

        # Constraints.
        x = np.maximum(x, lower_bound)
        x = np.minimum(x, upper_bound)

        # Stopping criterion
        if (i + 1) % check_each == 0:
            # Update energy
            energy_before = energy_now
            energy_now = np.dot(x, filterq.dot(x)) / 2

            logging.info("Energy at iter %d: %.6g", i + 1, energy_now)

            # Check stopping criterion
            cum_rel_improvement = (energy_before - energy_now) / energy_before
            if cum_rel_improvement < cum_rel_tol:
                break

    return x


def signed_distance_function(
    levelset: np.ndarray, band_radius: int
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """
    Return the distance to the 0.5 levelset of a function, the mask of the
    border (i.e., the nearest cells to the 0.5 level-set) and the mask of the
    band (i.e., the cells of the function whose distance to the 0.5 level-set
    is less of equal to `band_radius`).
    """

    binary_array = np.where(levelset > 0, True, False)

    # Compute the band and the border.
    dist_func = ndi.distance_transform_edt
    distance = np.where(
        binary_array, dist_func(binary_array) - 0.5, -dist_func(~binary_array) + 0.5
    )
    border = np.abs(distance) < 1
    band = np.abs(distance) <= band_radius

    return distance, border, band


def signed_distance_function_iso0(
    levelset: np.ndarray, band_radius: int
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """
    Return the distance to the 0 levelset of a function, the mask of the
    border (i.e., the nearest cells to the 0 level-set) and the mask of the
    band (i.e., the cells of the function whose distance to the 0 level-set
    is less of equal to `band_radius`).
    """

    binary_array = levelset > 0

    # Compute the band and the border.
    dist_func = ndi.distance_transform_edt
    distance = np.where(
        binary_array, dist_func(binary_array), -dist_func(~binary_array)
    )
    border = np.zeros_like(levelset, dtype=bool)
    border[:-1, :, :] |= levelset[:-1, :, :] * levelset[1:, :, :] <= 0
    border[:, :-1, :] |= levelset[:, :-1, :] * levelset[:, 1:, :] <= 0
    border[:, :, :-1] |= levelset[:, :, :-1] * levelset[:, :, 1:] <= 0
    band = np.abs(distance) <= band_radius

    return distance, border, band


def signed_distance_function_gpu(levelset: torch.Tensor, band_radius: int):
    binary_array = (levelset > 0).float()

    # Compute distance transform
    dist_pos = (
        F.max_pool3d(
            -binary_array.unsqueeze(0).unsqueeze(0), kernel_size=3, stride=1, padding=1
        )
        .squeeze(0)
        .squeeze(0)
        + binary_array
    )
    dist_neg = F.max_pool3d(
        (binary_array - 1).unsqueeze(0).unsqueeze(0), kernel_size=3, stride=1, padding=1
    ).squeeze(0).squeeze(0) + (1 - binary_array)

    distance = torch.where(binary_array > 0, dist_pos - 0.5, -dist_neg + 0.5)

    # breakpoint()

    # Use levelset as distance directly
    # distance = levelset
    # print(distance.shape)
    # Compute border and band
    border = torch.abs(distance) < 1
    band = torch.abs(distance) <= band_radius

    return distance, border, band


def smooth_constrained(
    binary_array: np.ndarray,
    band_radius: int = 4,
    max_iters: int = 250,
    rel_tol: float = 1e-6,
) -> np.ndarray:
    """
    Implementation of the smoothing method from

    "Surface Extraction from Binary Volumes with Higher-Order Smoothness"
    Victor Lempitsky, CVPR10
    """

    # # Compute the distance map, the border and the band.
    logging.info("Computing distance transform...")
    # distance, _, band = signed_distance_function(binary_array, band_radius)
    binary_array_gpu = torch.from_numpy(binary_array).cuda()
    distance, _, band = signed_distance_function_gpu(binary_array_gpu, band_radius)
    distance = distance.cpu().numpy()
    band = band.cpu().numpy()

    variable_indices = _build_variable_indices(band)

    # Compute filterq.
    logging.info("Building matrix filterq...")
    if binary_array.ndim == 3:
        filterq = _buildq3d(variable_indices)
        # variable_indices_gpu = torch.from_numpy(variable_indices).cuda()
        # filterq_gpu = _buildq3d_gpu(variable_indices_gpu)
        # filterq = filterq_gpu.cpu().numpy()
    elif binary_array.ndim == 2:
        filterq = _buildq2d(variable_indices)
    else:
        raise ValueError("binary_array.ndim not in [2, 3]")

    # Initialize the variables.
    res = np.asarray(distance, dtype=np.double)
    x = res[band]
    upper_bound = np.where(x < 0, x, np.inf)
    lower_bound = np.where(x > 0, x, -np.inf)

    upper_bound[np.abs(upper_bound) < 1] = 0
    lower_bound[np.abs(lower_bound) < 1] = 0

    # Solve.
    logging.info("Minimizing energy...")
    x = _jacobi(
        filterq=filterq,
        x0=x,
        lower_bound=lower_bound,
        upper_bound=upper_bound,
        max_iters=max_iters,
        rel_tol=rel_tol,
    )

    res[band] = x
    return res


def total_variation_denoising(x, weight=0.1, num_iterations=5, eps=1e-8):
    diff_x = torch.diff(x, dim=0, prepend=x[:1])
    diff_y = torch.diff(x, dim=1, prepend=x[:, :1])
    diff_z = torch.diff(x, dim=2, prepend=x[:, :, :1])

    norm = torch.sqrt(diff_x**2 + diff_y**2 + diff_z**2 + eps)

    div_x = torch.diff(diff_x / norm, dim=0, append=diff_x[-1:] / norm[-1:])
    div_y = torch.diff(diff_y / norm, dim=1, append=diff_y[:, -1:] / norm[:, -1:])
    div_z = torch.diff(diff_z / norm, dim=2, append=diff_z[:, :, -1:] / norm[:, :, -1:])

    return x - weight * (div_x + div_y + div_z)


def smooth_constrained_gpu(
    binary_array: torch.Tensor,
    band_radius: int = 4,
    max_iters: int = 250,
    rel_tol: float = 1e-4,
):
    distance, _, band = signed_distance_function_gpu(binary_array, band_radius)

    # Initialize variables
    x = distance[band]
    upper_bound = torch.where(x < 0, x, torch.tensor(float("inf"), device=x.device))
    lower_bound = torch.where(x > 0, x, torch.tensor(float("-inf"), device=x.device))

    upper_bound[torch.abs(upper_bound) < 1] = 0
    lower_bound[torch.abs(lower_bound) < 1] = 0

    # Define the 3D Laplacian kernel
    laplacian_kernel = torch.tensor(
        [
            [
                [
                    [[0, 1, 0], [1, -6, 1], [0, 1, 0]],
                    [[1, 0, 1], [0, 0, 0], [1, 0, 1]],
                    [[0, 1, 0], [1, 0, 1], [0, 1, 0]],
                ]
            ]
        ],
        device=x.device,
    ).float()

    laplacian_kernel = laplacian_kernel / laplacian_kernel.abs().sum()

    breakpoint()

    # Simplified Jacobi iteration
    for i in range(max_iters):
        # Reshape x to 5D tensor (batch, channel, depth, height, width)
        x_5d = x.view(1, 1, *band.shape)
        x_3d = x.view(*band.shape)

        # Apply 3D convolution
        laplacian = F.conv3d(x_5d, laplacian_kernel, padding=1)

        # Reshape back to original dimensions
        laplacian = laplacian.view(x.shape)

        # Use a small relaxation factor to improve stability
        relaxation_factor = 0.1
        tv_weight = 0.1
        # x_new = x + relaxation_factor * laplacian
        x_new = total_variation_denoising(x_3d, weight=tv_weight)
        # Print laplacian min and max
        # print(f"Laplacian min: {laplacian.min().item():.4f}, max: {laplacian.max().item():.4f}")

        # Apply constraints
        # Reshape x_new to match the dimensions of lower_bound and upper_bound
        x_new = x_new.view(x.shape)
        x_new = torch.clamp(x_new, min=lower_bound, max=upper_bound)

        # Check for convergence
        diff_norm = torch.norm(x_new - x)
        print(diff_norm)
        x_norm = torch.norm(x)

        if x_norm > 1e-8:  # Avoid division by very small numbers
            relative_change = diff_norm / x_norm
            if relative_change < rel_tol:
                break
        elif diff_norm < rel_tol:  # If x_norm is very small, check absolute change
            break

        x = x_new

        # Check for NaN and break if found, also check for inf
        if torch.isnan(x).any() or torch.isinf(x).any():
            print(f"NaN or Inf detected at iteration {i}")
            breakpoint()
            break

    result = distance.clone()
    result[band] = x
    return result


def smooth_gaussian(binary_array: np.ndarray, sigma: float = 3) -> np.ndarray:
    vol = np.float_(binary_array) - 0.5
    return ndi.gaussian_filter(vol, sigma=sigma)


def smooth_gaussian_gpu(binary_array: torch.Tensor, sigma: float = 3):
    # vol = binary_array.float()
    vol = binary_array
    kernel_size = int(2 * sigma + 1)
    kernel = torch.ones(
        1,
        1,
        kernel_size,
        kernel_size,
        kernel_size,
        device=binary_array.device,
        dtype=vol.dtype,
    ) / (kernel_size**3)
    return F.conv3d(
        vol.unsqueeze(0).unsqueeze(0), kernel, padding=kernel_size // 2
    ).squeeze()


def smooth(binary_array: np.ndarray, method: str = "auto", **kwargs) -> np.ndarray:
    """
    Smooths the 0.5 level-set of a binary array. Returns a floating-point
    array with a smoothed version of the original level-set in the 0 isovalue.

    This function can apply two different methods:

    - A constrained smoothing method which preserves details and fine
      structures, but it is slow and requires a large amount of memory. This
      method is recommended when the input array is small (smaller than
      (500, 500, 500)).
    - A Gaussian filter applied over the binary array. This method is fast, but
      not very precise, as it can destroy fine details. It is only recommended
      when the input array is large and the 0.5 level-set does not contain
      thin structures.

    Parameters
    ----------
    binary_array : ndarray
        Input binary array with the 0.5 level-set to smooth.
    method : str, one of ['auto', 'gaussian', 'constrained']
        Smoothing method. If 'auto' is given, the method will be automatically
        chosen based on the size of `binary_array`.

    Parameters for 'gaussian'
    -------------------------
    sigma : float
        Size of the Gaussian filter (default 3).

    Parameters for 'constrained'
    ----------------------------
    max_iters : positive integer
        Number of iterations of the constrained optimization method
        (default 250).
    rel_tol: float
        Relative tolerance as a stopping criterion (default 1e-6).

    Output
    ------
    res : ndarray
        Floating-point array with a smoothed 0 level-set.
    """

    binary_array = np.asarray(binary_array)

    if method == "auto":
        if binary_array.size > 512**3:
            method = "gaussian"
        else:
            method = "constrained"

    if method == "gaussian":
        return smooth_gaussian(binary_array, **kwargs)

    if method == "constrained":
        return smooth_constrained(binary_array, **kwargs)

    raise ValueError("Unknown method '{}'".format(method))


def smooth_gpu(binary_array: torch.Tensor, method: str = "auto", **kwargs):
    if method == "auto":
        method = "gaussian" if binary_array.numel() > 512**3 else "constrained"

    if method == "gaussian":
        return smooth_gaussian_gpu(binary_array, **kwargs)
    elif method == "constrained":
        return smooth_constrained_gpu(binary_array, **kwargs)
    else:
        raise ValueError(f"Unknown method '{method}'")