Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,844 Bytes
c9724af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
# Adapted from https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb
import argparse
import os
import random
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import cv2
import numpy as np
import requests
import torch
from PIL import Image
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
def create_palette():
# Define a palette with 24 colors for labels 0-23 (example colors)
palette = [
0,
0,
0, # Label 0 (black)
255,
0,
0, # Label 1 (red)
0,
255,
0, # Label 2 (green)
0,
0,
255, # Label 3 (blue)
255,
255,
0, # Label 4 (yellow)
255,
0,
255, # Label 5 (magenta)
0,
255,
255, # Label 6 (cyan)
128,
0,
0, # Label 7 (dark red)
0,
128,
0, # Label 8 (dark green)
0,
0,
128, # Label 9 (dark blue)
128,
128,
0, # Label 10
128,
0,
128, # Label 11
0,
128,
128, # Label 12
64,
0,
0, # Label 13
0,
64,
0, # Label 14
0,
0,
64, # Label 15
64,
64,
0, # Label 16
64,
0,
64, # Label 17
0,
64,
64, # Label 18
192,
192,
192, # Label 19 (light gray)
128,
128,
128, # Label 20 (gray)
255,
165,
0, # Label 21 (orange)
75,
0,
130, # Label 22 (indigo)
238,
130,
238, # Label 23 (violet)
]
# Extend the palette to have 768 values (256 * 3)
palette.extend([0] * (768 - len(palette)))
return palette
PALETTE = create_palette()
# Result Utils
@dataclass
class BoundingBox:
xmin: int
ymin: int
xmax: int
ymax: int
@property
def xyxy(self) -> List[float]:
return [self.xmin, self.ymin, self.xmax, self.ymax]
@dataclass
class DetectionResult:
score: Optional[float] = None
label: Optional[str] = None
box: Optional[BoundingBox] = None
mask: Optional[np.array] = None
@classmethod
def from_dict(cls, detection_dict: Dict) -> "DetectionResult":
return cls(
score=detection_dict["score"],
label=detection_dict["label"],
box=BoundingBox(
xmin=detection_dict["box"]["xmin"],
ymin=detection_dict["box"]["ymin"],
xmax=detection_dict["box"]["xmax"],
ymax=detection_dict["box"]["ymax"],
),
)
# Utils
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
# Find contours in the binary mask
contours, _ = cv2.findContours(
mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
# Find the contour with the largest area
largest_contour = max(contours, key=cv2.contourArea)
# Extract the vertices of the contour
polygon = largest_contour.reshape(-1, 2).tolist()
return polygon
def polygon_to_mask(
polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]
) -> np.ndarray:
"""
Convert a polygon to a segmentation mask.
Args:
- polygon (list): List of (x, y) coordinates representing the vertices of the polygon.
- image_shape (tuple): Shape of the image (height, width) for the mask.
Returns:
- np.ndarray: Segmentation mask with the polygon filled.
"""
# Create an empty mask
mask = np.zeros(image_shape, dtype=np.uint8)
# Convert polygon to an array of points
pts = np.array(polygon, dtype=np.int32)
# Fill the polygon with white color (255)
cv2.fillPoly(mask, [pts], color=(255,))
return mask
def load_image(image_str: str) -> Image.Image:
if image_str.startswith("http"):
image = Image.open(requests.get(image_str, stream=True).raw).convert("RGB")
else:
image = Image.open(image_str).convert("RGB")
return image
def get_boxes(results: DetectionResult) -> List[List[List[float]]]:
boxes = []
for result in results:
xyxy = result.box.xyxy
boxes.append(xyxy)
return [boxes]
def refine_masks(
masks: torch.BoolTensor, polygon_refinement: bool = False
) -> List[np.ndarray]:
masks = masks.cpu().float()
masks = masks.permute(0, 2, 3, 1)
masks = masks.mean(axis=-1)
masks = (masks > 0).int()
masks = masks.numpy().astype(np.uint8)
masks = list(masks)
if polygon_refinement:
for idx, mask in enumerate(masks):
shape = mask.shape
polygon = mask_to_polygon(mask)
mask = polygon_to_mask(polygon, shape)
masks[idx] = mask
return masks
# Post-processing Utils
def generate_colored_segmentation(label_image):
# Create a PIL Image from the label image (assuming it's a 2D numpy array)
label_image_pil = Image.fromarray(label_image.astype(np.uint8), mode="P")
# Apply the palette to the image
palette = create_palette()
label_image_pil.putpalette(palette)
return label_image_pil
def plot_segmentation(image, detections):
seg_map = np.zeros(image.size[::-1], dtype=np.uint8)
for i, detection in enumerate(detections):
mask = detection.mask
seg_map[mask > 0] = i + 1
seg_map_pil = generate_colored_segmentation(seg_map)
return seg_map_pil
# Grounded SAM
def prepare_model(
device: str = "cuda",
detector_id: Optional[str] = None,
segmenter_id: Optional[str] = None,
):
detector_id = (
detector_id if detector_id is not None else "IDEA-Research/grounding-dino-tiny"
)
object_detector = pipeline(
model=detector_id, task="zero-shot-object-detection", device=device
)
segmenter_id = segmenter_id if segmenter_id is not None else "facebook/sam-vit-base"
processor = AutoProcessor.from_pretrained(segmenter_id)
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(device)
return object_detector, processor, segmentator
def detect(
object_detector: Any,
image: Image.Image,
labels: List[str],
threshold: float = 0.3,
) -> List[Dict[str, Any]]:
"""
Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion.
"""
labels = [label if label.endswith(".") else label + "." for label in labels]
results = object_detector(image, candidate_labels=labels, threshold=threshold)
results = [DetectionResult.from_dict(result) for result in results]
return results
def segment(
processor: Any,
segmentator: Any,
image: Image.Image,
boxes: Optional[List[List[List[float]]]] = None,
detection_results: Optional[List[Dict[str, Any]]] = None,
polygon_refinement: bool = False,
) -> List[DetectionResult]:
"""
Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes.
"""
if detection_results is None and boxes is None:
raise ValueError(
"Either detection_results or detection_boxes must be provided."
)
if boxes is None:
boxes = get_boxes(detection_results)
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(
segmentator.device, segmentator.dtype
)
outputs = segmentator(**inputs)
masks = processor.post_process_masks(
masks=outputs.pred_masks,
original_sizes=inputs.original_sizes,
reshaped_input_sizes=inputs.reshaped_input_sizes,
)[0]
masks = refine_masks(masks, polygon_refinement)
if detection_results is None:
detection_results = [DetectionResult() for _ in masks]
for detection_result, mask in zip(detection_results, masks):
detection_result.mask = mask
return detection_results
def grounded_segmentation(
object_detector,
processor,
segmentator,
image: Union[Image.Image, str],
labels: Union[str, List[str]],
threshold: float = 0.3,
polygon_refinement: bool = False,
) -> Tuple[np.ndarray, List[DetectionResult], Image.Image]:
if isinstance(image, str):
image = load_image(image)
if isinstance(labels, str):
labels = labels.split(",")
detections = detect(object_detector, image, labels, threshold)
detections = segment(processor, segmentator, image, detections, polygon_refinement)
seg_map_pil = plot_segmentation(image, detections)
return np.array(image), detections, seg_map_pil
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image", type=str, required=True)
parser.add_argument("--labels", type=str, nargs="+", required=True)
parser.add_argument("--output", type=str, default="./", help="Output directory")
parser.add_argument("--threshold", type=float, default=0.3)
parser.add_argument(
"--detector_id", type=str, default="IDEA-Research/grounding-dino-base"
)
parser.add_argument("--segmenter_id", type=str, default="facebook/sam-vit-base")
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
object_detector, processor, segmentator = prepare_model(
device=device, detector_id=args.detector_id, segmenter_id=args.segmenter_id
)
image_array, detections, seg_map_pil = grounded_segmentation(
object_detector,
processor,
segmentator,
image=args.image,
labels=args.labels,
threshold=args.threshold,
polygon_refinement=True,
)
os.makedirs(args.output, exist_ok=True)
seg_map_pil.save(os.path.join(args.output, "segmentation.png"))
|