File size: 9,844 Bytes
c9724af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# Adapted from https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Grounding%20DINO/GroundingDINO_with_Segment_Anything.ipynb

import argparse
import os
import random
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import cv2
import numpy as np
import requests
import torch
from PIL import Image
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline


def create_palette():
    # Define a palette with 24 colors for labels 0-23 (example colors)
    palette = [
        0,
        0,
        0,  # Label 0 (black)
        255,
        0,
        0,  # Label 1 (red)
        0,
        255,
        0,  # Label 2 (green)
        0,
        0,
        255,  # Label 3 (blue)
        255,
        255,
        0,  # Label 4 (yellow)
        255,
        0,
        255,  # Label 5 (magenta)
        0,
        255,
        255,  # Label 6 (cyan)
        128,
        0,
        0,  # Label 7 (dark red)
        0,
        128,
        0,  # Label 8 (dark green)
        0,
        0,
        128,  # Label 9 (dark blue)
        128,
        128,
        0,  # Label 10
        128,
        0,
        128,  # Label 11
        0,
        128,
        128,  # Label 12
        64,
        0,
        0,  # Label 13
        0,
        64,
        0,  # Label 14
        0,
        0,
        64,  # Label 15
        64,
        64,
        0,  # Label 16
        64,
        0,
        64,  # Label 17
        0,
        64,
        64,  # Label 18
        192,
        192,
        192,  # Label 19 (light gray)
        128,
        128,
        128,  # Label 20 (gray)
        255,
        165,
        0,  # Label 21 (orange)
        75,
        0,
        130,  # Label 22 (indigo)
        238,
        130,
        238,  # Label 23 (violet)
    ]
    # Extend the palette to have 768 values (256 * 3)
    palette.extend([0] * (768 - len(palette)))
    return palette


PALETTE = create_palette()


# Result Utils
@dataclass
class BoundingBox:
    xmin: int
    ymin: int
    xmax: int
    ymax: int

    @property
    def xyxy(self) -> List[float]:
        return [self.xmin, self.ymin, self.xmax, self.ymax]


@dataclass
class DetectionResult:
    score: Optional[float] = None
    label: Optional[str] = None
    box: Optional[BoundingBox] = None
    mask: Optional[np.array] = None

    @classmethod
    def from_dict(cls, detection_dict: Dict) -> "DetectionResult":
        return cls(
            score=detection_dict["score"],
            label=detection_dict["label"],
            box=BoundingBox(
                xmin=detection_dict["box"]["xmin"],
                ymin=detection_dict["box"]["ymin"],
                xmax=detection_dict["box"]["xmax"],
                ymax=detection_dict["box"]["ymax"],
            ),
        )


# Utils
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
    # Find contours in the binary mask
    contours, _ = cv2.findContours(
        mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
    )

    # Find the contour with the largest area
    largest_contour = max(contours, key=cv2.contourArea)

    # Extract the vertices of the contour
    polygon = largest_contour.reshape(-1, 2).tolist()

    return polygon


def polygon_to_mask(
    polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]
) -> np.ndarray:
    """
    Convert a polygon to a segmentation mask.

    Args:
    - polygon (list): List of (x, y) coordinates representing the vertices of the polygon.
    - image_shape (tuple): Shape of the image (height, width) for the mask.

    Returns:
    - np.ndarray: Segmentation mask with the polygon filled.
    """
    # Create an empty mask
    mask = np.zeros(image_shape, dtype=np.uint8)

    # Convert polygon to an array of points
    pts = np.array(polygon, dtype=np.int32)

    # Fill the polygon with white color (255)
    cv2.fillPoly(mask, [pts], color=(255,))

    return mask


def load_image(image_str: str) -> Image.Image:
    if image_str.startswith("http"):
        image = Image.open(requests.get(image_str, stream=True).raw).convert("RGB")
    else:
        image = Image.open(image_str).convert("RGB")

    return image


def get_boxes(results: DetectionResult) -> List[List[List[float]]]:
    boxes = []
    for result in results:
        xyxy = result.box.xyxy
        boxes.append(xyxy)

    return [boxes]


def refine_masks(
    masks: torch.BoolTensor, polygon_refinement: bool = False
) -> List[np.ndarray]:
    masks = masks.cpu().float()
    masks = masks.permute(0, 2, 3, 1)
    masks = masks.mean(axis=-1)
    masks = (masks > 0).int()
    masks = masks.numpy().astype(np.uint8)
    masks = list(masks)

    if polygon_refinement:
        for idx, mask in enumerate(masks):
            shape = mask.shape
            polygon = mask_to_polygon(mask)
            mask = polygon_to_mask(polygon, shape)
            masks[idx] = mask

    return masks


# Post-processing Utils
def generate_colored_segmentation(label_image):
    # Create a PIL Image from the label image (assuming it's a 2D numpy array)
    label_image_pil = Image.fromarray(label_image.astype(np.uint8), mode="P")

    # Apply the palette to the image
    palette = create_palette()
    label_image_pil.putpalette(palette)

    return label_image_pil


def plot_segmentation(image, detections):
    seg_map = np.zeros(image.size[::-1], dtype=np.uint8)
    for i, detection in enumerate(detections):
        mask = detection.mask
        seg_map[mask > 0] = i + 1
    seg_map_pil = generate_colored_segmentation(seg_map)
    return seg_map_pil


# Grounded SAM
def prepare_model(
    device: str = "cuda",
    detector_id: Optional[str] = None,
    segmenter_id: Optional[str] = None,
):
    detector_id = (
        detector_id if detector_id is not None else "IDEA-Research/grounding-dino-tiny"
    )
    object_detector = pipeline(
        model=detector_id, task="zero-shot-object-detection", device=device
    )

    segmenter_id = segmenter_id if segmenter_id is not None else "facebook/sam-vit-base"
    processor = AutoProcessor.from_pretrained(segmenter_id)
    segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(device)

    return object_detector, processor, segmentator


def detect(
    object_detector: Any,
    image: Image.Image,
    labels: List[str],
    threshold: float = 0.3,
) -> List[Dict[str, Any]]:
    """
    Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion.
    """
    labels = [label if label.endswith(".") else label + "." for label in labels]

    results = object_detector(image, candidate_labels=labels, threshold=threshold)
    results = [DetectionResult.from_dict(result) for result in results]

    return results


def segment(
    processor: Any,
    segmentator: Any,
    image: Image.Image,
    boxes: Optional[List[List[List[float]]]] = None,
    detection_results: Optional[List[Dict[str, Any]]] = None,
    polygon_refinement: bool = False,
) -> List[DetectionResult]:
    """
    Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes.
    """
    if detection_results is None and boxes is None:
        raise ValueError(
            "Either detection_results or detection_boxes must be provided."
        )

    if boxes is None:
        boxes = get_boxes(detection_results)

    inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(
        segmentator.device, segmentator.dtype
    )

    outputs = segmentator(**inputs)
    masks = processor.post_process_masks(
        masks=outputs.pred_masks,
        original_sizes=inputs.original_sizes,
        reshaped_input_sizes=inputs.reshaped_input_sizes,
    )[0]

    masks = refine_masks(masks, polygon_refinement)

    if detection_results is None:
        detection_results = [DetectionResult() for _ in masks]

    for detection_result, mask in zip(detection_results, masks):
        detection_result.mask = mask

    return detection_results


def grounded_segmentation(
    object_detector,
    processor,
    segmentator,
    image: Union[Image.Image, str],
    labels: Union[str, List[str]],
    threshold: float = 0.3,
    polygon_refinement: bool = False,
) -> Tuple[np.ndarray, List[DetectionResult], Image.Image]:
    if isinstance(image, str):
        image = load_image(image)
    if isinstance(labels, str):
        labels = labels.split(",")

    detections = detect(object_detector, image, labels, threshold)
    detections = segment(processor, segmentator, image, detections, polygon_refinement)

    seg_map_pil = plot_segmentation(image, detections)

    return np.array(image), detections, seg_map_pil


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--image", type=str, required=True)
    parser.add_argument("--labels", type=str, nargs="+", required=True)
    parser.add_argument("--output", type=str, default="./", help="Output directory")
    parser.add_argument("--threshold", type=float, default=0.3)
    parser.add_argument(
        "--detector_id", type=str, default="IDEA-Research/grounding-dino-base"
    )
    parser.add_argument("--segmenter_id", type=str, default="facebook/sam-vit-base")
    args = parser.parse_args()

    device = "cuda" if torch.cuda.is_available() else "cpu"
    object_detector, processor, segmentator = prepare_model(
        device=device, detector_id=args.detector_id, segmenter_id=args.segmenter_id
    )

    image_array, detections, seg_map_pil = grounded_segmentation(
        object_detector,
        processor,
        segmentator,
        image=args.image,
        labels=args.labels,
        threshold=args.threshold,
        polygon_refinement=True,
    )

    os.makedirs(args.output, exist_ok=True)
    seg_map_pil.save(os.path.join(args.output, "segmentation.png"))