File size: 5,946 Bytes
c9724af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse
import os
from glob import glob
from typing import Any, List, Union

import gradio as gr
import numpy as np
import torch
import trimesh
from huggingface_hub import snapshot_download
from PIL import Image, ImageOps
from skimage import measure

from midi.pipelines.pipeline_midi import MIDIPipeline
from midi.utils.smoothing import smooth_gpu


def preprocess_image(rgb_image, seg_image):
    if isinstance(rgb_image, str):
        rgb_image = Image.open(rgb_image)
    if isinstance(seg_image, str):
        seg_image = Image.open(seg_image)
    rgb_image = rgb_image.convert("RGB")
    seg_image = seg_image.convert("L")

    width, height = rgb_image.size

    seg_np = np.array(seg_image)
    rows, cols = np.where(seg_np > 0)
    if rows.size == 0 or cols.size == 0:
        return rgb_image, seg_image

    # compute the bounding box of combined instances
    min_row, max_row = min(rows), max(rows)
    min_col, max_col = min(cols), max(cols)
    L = max(
        max(abs(max_row - width // 2), abs(min_row - width // 2)) * 2,
        max(abs(max_col - height // 2), abs(min_col - height // 2)) * 2,
    )

    # pad the image
    if L > width * 0.8:
        width = int(L / 4 * 5)
    if L > height * 0.8:
        height = int(L / 4 * 5)
    rgb_new = Image.new("RGB", (width, height), (255, 255, 255))
    seg_new = Image.new("L", (width, height), 0)
    x_offset = (width - rgb_image.size[0]) // 2
    y_offset = (height - rgb_image.size[1]) // 2
    rgb_new.paste(rgb_image, (x_offset, y_offset))
    seg_new.paste(seg_image, (x_offset, y_offset))

    # pad to the square
    max_dim = max(width, height)
    rgb_new = ImageOps.expand(
        rgb_new, border=(0, 0, max_dim - width, max_dim - height), fill="white"
    )
    seg_new = ImageOps.expand(
        seg_new, border=(0, 0, max_dim - width, max_dim - height), fill=0
    )

    return rgb_new, seg_new


def split_rgb_mask(rgb_image, seg_image):
    if isinstance(rgb_image, str):
        rgb_image = Image.open(rgb_image)
    if isinstance(seg_image, str):
        seg_image = Image.open(seg_image)
    rgb_image = rgb_image.convert("RGB")
    seg_image = seg_image.convert("L")

    rgb_array = np.array(rgb_image)
    seg_array = np.array(seg_image)

    label_ids = np.unique(seg_array)
    label_ids = label_ids[label_ids > 0]

    instance_rgbs, instance_masks, scene_rgbs = [], [], []

    for segment_id in sorted(label_ids):
        # Here we set the background to white
        white_background = np.ones_like(rgb_array) * 255

        mask = np.zeros_like(seg_array, dtype=np.uint8)
        mask[seg_array == segment_id] = 255
        segment_rgb = white_background.copy()
        segment_rgb[mask == 255] = rgb_array[mask == 255]

        segment_rgb_image = Image.fromarray(segment_rgb)
        segment_mask_image = Image.fromarray(mask)
        instance_rgbs.append(segment_rgb_image)
        instance_masks.append(segment_mask_image)
        scene_rgbs.append(rgb_image)

    return instance_rgbs, instance_masks, scene_rgbs


@torch.no_grad()
def run_midi(
    pipe: Any,
    rgb_image: Union[str, Image.Image],
    seg_image: Union[str, Image.Image],
    seed: int,
    num_inference_steps: int = 50,
    guidance_scale: float = 7.0,
    do_image_padding: bool = False,
) -> trimesh.Scene:
    if do_image_padding:
        rgb_image, seg_image = preprocess_image(rgb_image, seg_image)
    instance_rgbs, instance_masks, scene_rgbs = split_rgb_mask(rgb_image, seg_image)

    num_instances = len(instance_rgbs)
    outputs = pipe(
        image=instance_rgbs,
        mask=instance_masks,
        image_scene=scene_rgbs,
        attention_kwargs={"num_instances": num_instances},
        generator=torch.Generator(device=pipe.device).manual_seed(seed),
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        decode_progressive=True,
        return_dict=False,
    )

    # marching cubes
    trimeshes = []
    for _, (logits_, grid_size, bbox_size, bbox_min, bbox_max) in enumerate(
        zip(*outputs)
    ):
        grid_logits = logits_.view(grid_size)
        grid_logits = smooth_gpu(grid_logits, method="gaussian", sigma=1)
        torch.cuda.empty_cache()
        vertices, faces, normals, _ = measure.marching_cubes(
            grid_logits.float().cpu().numpy(), 0, method="lewiner"
        )
        vertices = vertices / grid_size * bbox_size + bbox_min

        # Trimesh
        mesh = trimesh.Trimesh(vertices.astype(np.float32), np.ascontiguousarray(faces))
        trimeshes.append(mesh)

    # compose the output meshes
    scene = trimesh.Scene(trimeshes)

    return scene


if __name__ == "__main__":
    device = "cuda"
    dtype = torch.bfloat16

    parser = argparse.ArgumentParser()
    parser.add_argument("--rgb", type=str, required=True)
    parser.add_argument("--seg", type=str, required=True)
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--num-inference-steps", type=int, default=50)
    parser.add_argument("--guidance-scale", type=float, default=7.0)
    parser.add_argument("--do-image-padding", action="store_true")
    parser.add_argument("--output-dir", type=str, default="./")
    args = parser.parse_args()

    local_dir = "pretrained_weights/MIDI-3D"
    snapshot_download(repo_id="VAST-AI/MIDI-3D", local_dir=local_dir)
    pipe: MIDIPipeline = MIDIPipeline.from_pretrained(local_dir).to(device, dtype)
    pipe.init_custom_adapter(
        set_self_attn_module_names=[
            "blocks.8",
            "blocks.9",
            "blocks.10",
            "blocks.11",
            "blocks.12",
        ]
    )

    run_midi(
        pipe,
        rgb_image=args.rgb,
        seg_image=args.seg,
        seed=args.seed,
        num_inference_steps=args.num_inference_steps,
        guidance_scale=args.guidance_scale,
        do_image_padding=args.do_image_padding,
    ).export(os.path.join(args.output_dir, "output.glb"))