File size: 19,125 Bytes
c4ea5b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import inspect
import math
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL
import PIL.Image
import torch
import torch.nn.functional as F
from diffusers.image_processor import PipelineImageInput
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler  # not sure
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor
from peft import LoraConfig, get_peft_model_state_dict
from transformers import (
    BitImageProcessor,
    CLIPImageProcessor,
    CLIPVisionModelWithProjection,
    Dinov2Model,
)

from ..inference_utils import generate_dense_grid_points
from ..loaders import CustomAdapterMixin
from ..models.attention_processor import MIAttnProcessor2_0
from ..models.autoencoders import TripoSGVAEModel
from ..models.transformers import TripoSGDiTModel, set_transformer_attn_processor
from .pipeline_triposg_output import TripoSGPipelineOutput
from .pipeline_utils import TransformerDiffusionMixin

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    """
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError(
            "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
        )
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class MIDIPipeline(DiffusionPipeline, TransformerDiffusionMixin, CustomAdapterMixin):
    """
    Pipeline for image-to-scene generation based on pre-trained shape diffusion.
    """

    def __init__(
        self,
        vae: TripoSGVAEModel,
        transformer: TripoSGDiTModel,
        scheduler: FlowMatchEulerDiscreteScheduler,
        image_encoder_1: CLIPVisionModelWithProjection,
        image_encoder_2: Dinov2Model,
        feature_extractor_1: CLIPImageProcessor,
        feature_extractor_2: BitImageProcessor,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            transformer=transformer,
            scheduler=scheduler,
            image_encoder_1=image_encoder_1,
            image_encoder_2=image_encoder_2,
            feature_extractor_1=feature_extractor_1,
            feature_extractor_2=feature_extractor_2,
        )

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def attention_kwargs(self):
        return self._attention_kwargs

    @property
    def interrupt(self):
        return self._interrupt

    @property
    def decode_progressive(self):
        return self._decode_progressive

    def encode_image_1(self, image, device, num_images_per_prompt):
        dtype = next(self.image_encoder_1.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor_1(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        image_embeds = self.image_encoder_1(image).image_embeds
        image_embeds = image_embeds.repeat_interleave(
            num_images_per_prompt, dim=0
        ).unsqueeze(1)
        uncond_image_embeds = torch.zeros_like(image_embeds)

        return image_embeds, uncond_image_embeds

    def encode_image_2(
        self,
        image_one,
        image_two,
        mask,
        device,
        num_images_per_prompt,
    ):
        dtype = next(self.image_encoder_2.parameters()).dtype

        images = [image_one, image_two, mask]
        images_new = []
        for i, image in enumerate(images):
            if not isinstance(image, torch.Tensor):
                if i <= 1:
                    images_new.append(
                        self.feature_extractor_2(
                            image, return_tensors="pt"
                        ).pixel_values
                    )
                else:
                    image = [
                        torch.from_numpy(
                            (np.array(im) / 255.0).astype(np.float32)
                        ).unsqueeze(0)
                        for im in image
                    ]
                    image = torch.stack(image, dim=0)
                    images_new.append(
                        F.interpolate(
                            image, size=images_new[0].shape[-2:], mode="nearest"
                        )
                    )

        image = torch.cat(images_new, dim=1).to(device=device, dtype=dtype)
        image_embeds = self.image_encoder_2(image).last_hidden_state
        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
        uncond_image_embeds = torch.zeros_like(image_embeds)

        return image_embeds, uncond_image_embeds

    def prepare_latents(
        self,
        batch_size,
        num_tokens,
        num_channels_latents,
        dtype,
        device,
        generator,
        latents: Optional[torch.Tensor] = None,
    ):
        if latents is not None:
            return latents.to(device=device, dtype=dtype)

        shape = (batch_size, num_tokens, num_channels_latents)

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)

        return latents

    @torch.no_grad()
    def decode_latents(
        self,
        latents: torch.Tensor,
        sampled_points: torch.Tensor,
        decode_progressive: bool = False,
        decode_to_cpu: bool = False,
        # Params for sampling points
        bbox_min: np.ndarray = np.array([-1.005, -1.005, -1.005]),
        bbox_max: np.ndarray = np.array([1.005, 1.005, 1.005]),
        octree_depth: int = 8,
        indexing: str = "ij",
        padding: float = 0.05,
    ):
        device, dtype = latents.device, latents.dtype
        batch_size = latents.shape[0]

        grid_sizes, bbox_sizes, bbox_mins, bbox_maxs = [], [], [], []

        if sampled_points is None:
            sampled_points, grid_size, bbox_size = generate_dense_grid_points(
                bbox_min, bbox_max, octree_depth, indexing
            )
            sampled_points = torch.FloatTensor(sampled_points).to(
                device=device, dtype=dtype
            )
            sampled_points = sampled_points.unsqueeze(0).expand(batch_size, -1, -1)

            grid_sizes.append(grid_size)
            bbox_sizes.append(bbox_size)
            bbox_mins.append(bbox_min)
            bbox_maxs.append(bbox_max)

        self.vae: TripoSGVAEModel
        output = self.vae.decode(
            latents, sampled_points=sampled_points, to_cpu=decode_to_cpu
        ).sample

        if not decode_progressive:
            return (output, grid_sizes, bbox_sizes, bbox_mins, bbox_maxs)

        grid_sizes, bbox_sizes, bbox_mins, bbox_maxs = [], [], [], []
        sampled_points_list = []

        for i in range(batch_size):
            sdf_ = output[i].squeeze(-1)  # [num_points]
            sampled_points_ = sampled_points[i]
            occupied_points = sampled_points_[sdf_ <= 0]  # [num_occupied_points, 3]

            if occupied_points.shape[0] == 0:
                logger.warning(
                    f"No occupied points found in batch {i}. Using original bounding box."
                )
            else:
                bbox_min = occupied_points.min(dim=0).values
                bbox_max = occupied_points.max(dim=0).values
                bbox_min = (bbox_min - padding).float().cpu().numpy()
                bbox_max = (bbox_max + padding).float().cpu().numpy()

            sampled_points_, grid_size, bbox_size = generate_dense_grid_points(
                bbox_min, bbox_max, octree_depth, indexing
            )
            sampled_points_ = torch.FloatTensor(sampled_points_).to(
                device=device, dtype=dtype
            )
            sampled_points_list.append(sampled_points_)

            grid_sizes.append(grid_size)
            bbox_sizes.append(bbox_size)
            bbox_mins.append(bbox_min)
            bbox_maxs.append(bbox_max)

        sampled_points = torch.stack(sampled_points_list, dim=0)

        # Re-decode the new sampled points
        output = self.vae.decode(
            latents, sampled_points=sampled_points, to_cpu=decode_to_cpu
        ).sample

        return (output, grid_sizes, bbox_sizes, bbox_mins, bbox_maxs)

    @torch.no_grad()
    def __call__(
        self,
        image: PipelineImageInput,
        mask: PipelineImageInput,
        image_scene: PipelineImageInput,
        num_inference_steps: int = 50,
        timesteps: List[int] = None,
        guidance_scale: float = 7.0,
        num_images_per_prompt: int = 1,
        sampled_points: Optional[torch.Tensor] = None,
        decode_progressive: bool = False,
        decode_to_cpu: bool = False,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        output_type: Optional[str] = "mesh_vf",
        return_dict: bool = True,
    ):
        # 1. Check inputs. Raise error if not correct
        # TODO

        self._decode_progressive = decode_progressive
        self._guidance_scale = guidance_scale
        self._attention_kwargs = attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if isinstance(image, PIL.Image.Image):
            batch_size = 1
        elif isinstance(image, list):
            batch_size = len(image)
        elif isinstance(image, torch.Tensor):
            batch_size = image.shape[0]
        else:
            raise ValueError("Invalid input type for image")

        device = self._execution_device

        # 3. Encode condition
        image_embeds_1, negative_image_embeds_1 = self.encode_image_1(
            image, device, num_images_per_prompt
        )
        image_embeds_2, negative_image_embeds_2 = self.encode_image_2(
            image, image_scene, mask, device, num_images_per_prompt
        )

        if self.do_classifier_free_guidance:
            image_embeds_1 = torch.cat([negative_image_embeds_1, image_embeds_1], dim=0)
            image_embeds_2 = torch.cat([negative_image_embeds_2, image_embeds_2], dim=0)

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps
        )
        num_warmup_steps = max(
            len(timesteps) - num_inference_steps * self.scheduler.order, 0
        )
        self._num_timesteps = len(timesteps)

        # 5. Prepare latent variables
        num_tokens = self.transformer.config.width
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_tokens,
            num_channels_latents,
            image_embeds_1.dtype,
            device,
            generator,
            latents,
        )

        # 6. Denoising loop
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = (
                    torch.cat([latents] * 2)
                    if self.do_classifier_free_guidance
                    else latents
                )
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latent_model_input.shape[0])

                noise_pred = self.transformer(
                    latent_model_input,
                    timestep,
                    encoder_hidden_states=image_embeds_1,
                    encoder_hidden_states_2=image_embeds_2,
                    attention_kwargs=attention_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_image = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (
                        noise_pred_image - noise_pred_uncond
                    )

                # compute the previous noisy sample x_t -> x_t-1
                latents_dtype = latents.dtype
                latents = self.scheduler.step(
                    noise_pred, t, latents, return_dict=False
                )[0]

                if latents.dtype != latents_dtype:
                    if torch.backends.mps.is_available():
                        # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                        latents = latents.to(latents_dtype)

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    image_embeds_1 = callback_outputs.pop(
                        "image_embeds_1", image_embeds_1
                    )
                    negative_image_embeds_1 = callback_outputs.pop(
                        "negative_image_embeds_1", negative_image_embeds_1
                    )
                    image_embeds_2 = callback_outputs.pop(
                        "image_embeds_2", image_embeds_2
                    )
                    negative_image_embeds_2 = callback_outputs.pop(
                        "negative_image_embeds_2", negative_image_embeds_2
                    )

                # call the callback, if provided
                if i == len(timesteps) - 1 or (
                    (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
                ):
                    progress_bar.update()

        grid_sizes, bbox_sizes, bbox_mins, bbox_maxs = None, None, None, None

        if output_type == "latent":
            output = latents
        else:
            output, grid_sizes, bbox_sizes, bbox_mins, bbox_maxs = self.decode_latents(
                latents,
                sampled_points=sampled_points,
                decode_progressive=decode_progressive,
                decode_to_cpu=decode_to_cpu,
            )

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (output, grid_sizes, bbox_sizes, bbox_mins, bbox_maxs)

        return TripoSGPipelineOutput(
            samples=output,
            grid_sizes=grid_sizes,
            bbox_sizes=bbox_sizes,
            bbox_mins=bbox_mins,
            bbox_maxs=bbox_maxs,
        )

    def _init_custom_adapter(
        self, set_self_attn_module_names: Optional[List[str]] = None
    ):
        # Set attention processor
        func_default = lambda name, hs, cad, ap: MIAttnProcessor2_0(use_mi=False)
        set_transformer_attn_processor(  # avoid warning
            self.transformer,
            set_self_attn_proc_func=func_default,
            set_cross_attn_1_proc_func=func_default,
            set_cross_attn_2_proc_func=func_default,
        )
        set_transformer_attn_processor(
            self.transformer,
            set_self_attn_proc_func=lambda name, hs, cad, ap: MIAttnProcessor2_0(),
            set_self_attn_module_names=set_self_attn_module_names,
        )