Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
class FrequencyPositionalEmbedding(nn.Module): | |
"""The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts | |
each feature dimension of `x[..., i]` into: | |
[ | |
sin(x[..., i]), | |
sin(f_1*x[..., i]), | |
sin(f_2*x[..., i]), | |
... | |
sin(f_N * x[..., i]), | |
cos(x[..., i]), | |
cos(f_1*x[..., i]), | |
cos(f_2*x[..., i]), | |
... | |
cos(f_N * x[..., i]), | |
x[..., i] # only present if include_input is True. | |
], here f_i is the frequency. | |
Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs]. | |
If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...]; | |
Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]. | |
Args: | |
num_freqs (int): the number of frequencies, default is 6; | |
logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], | |
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)]; | |
input_dim (int): the input dimension, default is 3; | |
include_input (bool): include the input tensor or not, default is True. | |
Attributes: | |
frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...], | |
otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1); | |
out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1), | |
otherwise, it is input_dim * num_freqs * 2. | |
""" | |
def __init__( | |
self, | |
num_freqs: int = 6, | |
logspace: bool = True, | |
input_dim: int = 3, | |
include_input: bool = True, | |
include_pi: bool = True, | |
) -> None: | |
"""The initialization""" | |
super().__init__() | |
if logspace: | |
frequencies = 2.0 ** torch.arange(num_freqs, dtype=torch.float32) | |
else: | |
frequencies = torch.linspace( | |
1.0, 2.0 ** (num_freqs - 1), num_freqs, dtype=torch.float32 | |
) | |
if include_pi: | |
frequencies *= torch.pi | |
self.register_buffer("frequencies", frequencies, persistent=False) | |
self.include_input = include_input | |
self.num_freqs = num_freqs | |
self.out_dim = self.get_dims(input_dim) | |
def get_dims(self, input_dim): | |
temp = 1 if self.include_input or self.num_freqs == 0 else 0 | |
out_dim = input_dim * (self.num_freqs * 2 + temp) | |
return out_dim | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""Forward process. | |
Args: | |
x: tensor of shape [..., dim] | |
Returns: | |
embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)] | |
where temp is 1 if include_input is True and 0 otherwise. | |
""" | |
if self.num_freqs > 0: | |
embed = (x[..., None].contiguous() * self.frequencies).view( | |
*x.shape[:-1], -1 | |
) | |
if self.include_input: | |
return torch.cat((x, embed.sin(), embed.cos()), dim=-1) | |
else: | |
return torch.cat((embed.sin(), embed.cos()), dim=-1) | |
else: | |
return x | |