MIDI-3D / midi /schedulers /scheduling_rectified_flow.py
huanngzh's picture
update
c9724af
"""
Adapted from https://github.com/huggingface/diffusers/blob/v0.30.3/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py.
"""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, logging
from torch.distributions import LogisticNormal
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# TODO: may move to training_utils.py
def compute_density_for_timestep_sampling(
weighting_scheme: str,
batch_size: int,
logit_mean: float = 0.0,
logit_std: float = 1.0,
mode_scale: float = None,
):
if weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(
mean=logit_mean, std=logit_std, size=(batch_size,), device="cpu"
)
u = torch.nn.functional.sigmoid(u)
elif weighting_scheme == "logit_normal_dist":
u = (
LogisticNormal(loc=logit_mean, scale=logit_std)
.sample((batch_size,))[:, 0]
.to("cpu")
)
elif weighting_scheme == "mode":
u = torch.rand(size=(batch_size,), device="cpu")
u = 1 - u - mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(batch_size,), device="cpu")
return u
def compute_loss_weighting(weighting_scheme: str, sigmas=None):
"""
Computes loss weighting scheme for SD3 training.
Courtesy: This was contributed by Rafie Walker in https://github.com/huggingface/diffusers/pull/8528.
SD3 paper reference: https://arxiv.org/abs/2403.03206v1.
"""
if weighting_scheme == "sigma_sqrt":
weighting = (sigmas**-2.0).float()
elif weighting_scheme == "cosmap":
bot = 1 - 2 * sigmas + 2 * sigmas**2
weighting = 2 / (math.pi * bot)
else:
weighting = torch.ones_like(sigmas)
return weighting
@dataclass
class RectifiedFlowSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.FloatTensor
class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin):
"""
The rectified flow scheduler is a scheduler that is used to propagate the diffusion process in the rectified flow.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
shift (`float`, defaults to 1.0):
The shift value for the timestep schedule.
"""
_compatibles = []
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
shift: float = 1.0,
use_dynamic_shifting: bool = False,
):
# pre-compute timesteps and sigmas; no use in fact
# NOTE that shape diffusion sample timesteps randomly or in a distribution,
# instead of sampling from the pre-defined linspace
timesteps = np.array(
[
(1.0 - i / num_train_timesteps) * num_train_timesteps
for i in range(num_train_timesteps)
]
)
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
sigmas = timesteps / num_train_timesteps
if not use_dynamic_shifting:
# when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
sigmas = self.time_shift(sigmas)
self.timesteps = sigmas * num_train_timesteps
self._step_index = None
self._begin_index = None
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def _sigma_to_t(self, sigma):
return sigma * self.config.num_train_timesteps
def _t_to_sigma(self, timestep):
return timestep / self.config.num_train_timesteps
def time_shift_dynamic(self, mu: float, sigma: float, t: torch.Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def time_shift(self, t: torch.Tensor):
return self.config.shift * t / (1 + (self.config.shift - 1) * t)
def set_timesteps(
self,
num_inference_steps: int = None,
device: Union[str, torch.device] = None,
sigmas: Optional[List[float]] = None,
mu: Optional[float] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
if self.config.use_dynamic_shifting and mu is None:
raise ValueError(
" you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`"
)
if sigmas is None:
self.num_inference_steps = num_inference_steps
timesteps = np.array(
[
(1.0 - i / num_inference_steps) * self.config.num_train_timesteps
for i in range(num_inference_steps)
]
) # different from the original code in SD3
sigmas = timesteps / self.config.num_train_timesteps
if self.config.use_dynamic_shifting:
sigmas = self.time_shift_dynamic(mu, 1.0, sigmas)
else:
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
timesteps = sigmas * self.config.num_train_timesteps
self.timesteps = timesteps.to(device=device)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self._step_index = None
self._begin_index = None
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
s_churn: float = 0.0,
s_tmin: float = 0.0,
s_tmax: float = float("inf"),
s_noise: float = 1.0,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[RectifiedFlowSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
s_churn (`float`):
s_tmin (`float`):
s_tmax (`float`):
s_noise (`float`, defaults to 1.0):
Scaling factor for noise added to the sample.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
tuple.
Returns:
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if self.step_index is None:
self._init_step_index(timestep)
# Upcast to avoid precision issues when computing prev_sample
sample = sample.to(torch.float32)
sigma = self.sigmas[self.step_index]
sigma_next = self.sigmas[self.step_index + 1]
# Here different directions are used for the flow matching
prev_sample = sample + (sigma - sigma_next) * model_output
# Cast sample back to model compatible dtype
prev_sample = prev_sample.to(model_output.dtype)
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return RectifiedFlowSchedulerOutput(prev_sample=prev_sample)
def scale_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
"""
Forward function for the noise scaling in the flow matching.
"""
sigmas = self._t_to_sigma(timesteps.to(dtype=torch.float32))
while len(sigmas.shape) < len(original_samples.shape):
sigmas = sigmas.unsqueeze(-1)
return (1.0 - sigmas) * original_samples + sigmas * noise
def __len__(self):
return self.config.num_train_timesteps