from typing import Callable, List, Optional, Tuple, Union import torch import torch.nn.functional as F from diffusers.models.attention_processor import Attention from diffusers.utils import logging from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available from diffusers.utils.torch_utils import is_torch_version, maybe_allow_in_graph from einops import rearrange from torch import nn logger = logging.get_logger(__name__) # pylint: disable=invalid-name class TripoSGAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the TripoSG model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from diffusers.models.embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) # NOTE that pre-trained models split heads first then split qkv or kv, like .view(..., attn.heads, 3, dim) # instead of .view(..., 3, attn.heads, dim). So we need to re-split here. if not attn.is_cross_attention: qkv = torch.cat((query, key, value), dim=-1) split_size = qkv.shape[-1] // attn.heads // 3 qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3) query, key, value = torch.split(qkv, split_size, dim=-1) else: kv = torch.cat((key, value), dim=-1) split_size = kv.shape[-1] // attn.heads // 2 kv = kv.view(batch_size, -1, attn.heads, split_size * 2) key, value = torch.split(kv, split_size, dim=-1) head_dim = key.shape[-1] query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class FusedTripoSGAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0) with fused projection layers. This is used in the HunyuanDiT model. It applies a s normalization layer and rotary embedding on query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "FusedTripoSGAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: from diffusers.models.embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) # NOTE that pre-trained split heads first, then split qkv if encoder_hidden_states is None: qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // attn.heads // 3 qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3) query, key, value = torch.split(qkv, split_size, dim=-1) else: if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) query = attn.to_q(hidden_states) kv = attn.to_kv(encoder_hidden_states) split_size = kv.shape[-1] // attn.heads // 2 kv = kv.view(batch_size, -1, attn.heads, split_size * 2) key, value = torch.split(kv, split_size, dim=-1) head_dim = key.shape[-1] query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class MIAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the MIDI model. It applies a normalization layer and rotary embedding on query and key vector. """ def __init__(self, use_mi: bool = True): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.use_mi = use_mi def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, num_instances: Optional[torch.IntTensor] = None, ) -> torch.Tensor: from diffusers.models.embeddings import apply_rotary_emb residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view( batch_size, channel, height * width ).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask( attention_mask, sequence_length, batch_size ) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view( batch_size, attn.heads, -1, attention_mask.shape[-1] ) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( 1, 2 ) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states( encoder_hidden_states ) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) # NOTE that pre-trained models split heads first then split qkv or kv, like .view(..., attn.heads, 3, dim) # instead of .view(..., 3, attn.heads, dim). So we need to re-split here. if not attn.is_cross_attention: qkv = torch.cat((query, key, value), dim=-1) split_size = qkv.shape[-1] // attn.heads // 3 qkv = qkv.view(batch_size, -1, attn.heads, split_size * 3) query, key, value = torch.split(qkv, split_size, dim=-1) else: kv = torch.cat((key, value), dim=-1) split_size = kv.shape[-1] // attn.heads // 2 kv = kv.view(batch_size, -1, attn.heads, split_size * 2) key, value = torch.split(kv, split_size, dim=-1) head_dim = key.shape[-1] query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) if not attn.is_cross_attention: key = apply_rotary_emb(key, image_rotary_emb) if self.use_mi and num_instances is not None: key = rearrange( key, "(b ni) h nt c -> b h (ni nt) c", ni=num_instances ).repeat_interleave(num_instances, dim=0) value = rearrange( value, "(b ni) h nt c -> b h (ni nt) c", ni=num_instances ).repeat_interleave(num_instances, dim=0) # the output of sdp = (batch, num_heads, seq_len, head_dim) hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, is_causal=False, ) else: hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape( batch_size, channel, height, width ) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states