# Copyright 2024 HunyuanDiT Authors, Qixun Wang and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Tuple, Union import torch import torch.utils.checkpoint from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import PeftAdapterMixin from diffusers.models.attention import FeedForward from diffusers.models.attention_processor import Attention, AttentionProcessor from diffusers.models.embeddings import ( GaussianFourierProjection, TimestepEmbedding, Timesteps, ) from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import ( AdaLayerNormContinuous, FP32LayerNorm, LayerNorm, ) from diffusers.utils import ( USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import maybe_allow_in_graph from torch import nn from ..attention_processor import FusedTripoSGAttnProcessor2_0, TripoSGAttnProcessor2_0 from .modeling_outputs import Transformer1DModelOutput logger = logging.get_logger(__name__) # pylint: disable=invalid-name @maybe_allow_in_graph class DiTBlock(nn.Module): r""" Transformer block used in Hunyuan-DiT model (https://github.com/Tencent/HunyuanDiT). Allow skip connection and QKNorm Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of headsto use for multi-head attention. cross_attention_dim (`int`,*optional*): The size of the encoder_hidden_states vector for cross attention. dropout(`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`,*optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. . norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_eps (`float`, *optional*, defaults to 1e-6): A small constant added to the denominator in normalization layers to prevent division by zero. final_dropout (`bool` *optional*, defaults to False): Whether to apply a final dropout after the last feed-forward layer. ff_inner_dim (`int`, *optional*): The size of the hidden layer in the feed-forward block. Defaults to `None`. ff_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the feed-forward block. skip (`bool`, *optional*, defaults to `False`): Whether to use skip connection. Defaults to `False` for down-blocks and mid-blocks. qk_norm (`bool`, *optional*, defaults to `True`): Whether to use normalization in QK calculation. Defaults to `True`. """ def __init__( self, dim: int, num_attention_heads: int, use_self_attention: bool = True, use_cross_attention: bool = False, self_attention_norm_type: Optional[str] = None, # ada layer norm cross_attention_dim: Optional[int] = None, cross_attention_norm_type: Optional[str] = "fp32_layer_norm", # parallel second cross attention use_cross_attention_2: bool = False, cross_attention_2_dim: Optional[int] = None, cross_attention_2_norm_type: Optional[str] = None, dropout=0.0, activation_fn: str = "gelu", norm_type: str = "fp32_layer_norm", # TODO norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, final_dropout: bool = False, ff_inner_dim: Optional[int] = None, # int(dim * 4) if None ff_bias: bool = True, skip: bool = False, skip_concat_front: bool = False, # [x, skip] or [skip, x] skip_norm_last: bool = False, # this is an error qk_norm: bool = True, qkv_bias: bool = True, ): super().__init__() self.use_self_attention = use_self_attention self.use_cross_attention = use_cross_attention self.use_cross_attention_2 = use_cross_attention_2 self.skip_concat_front = skip_concat_front self.skip_norm_last = skip_norm_last # Define 3 blocks. Each block has its own normalization layer. # NOTE: when new version comes, check norm2 and norm 3 # 1. Self-Attn if use_self_attention: if ( self_attention_norm_type == "fp32_layer_norm" or self_attention_norm_type is None ): self.norm1 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) else: raise NotImplementedError self.attn1 = Attention( query_dim=dim, cross_attention_dim=None, dim_head=dim // num_attention_heads, heads=num_attention_heads, qk_norm="rms_norm" if qk_norm else None, eps=1e-6, bias=qkv_bias, processor=TripoSGAttnProcessor2_0(), ) # 2. Cross-Attn if use_cross_attention: assert cross_attention_dim is not None self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, dim_head=dim // num_attention_heads, heads=num_attention_heads, qk_norm="rms_norm" if qk_norm else None, cross_attention_norm=cross_attention_norm_type, eps=1e-6, bias=qkv_bias, processor=TripoSGAttnProcessor2_0(), ) # 2'. Parallel Second Cross-Attn if use_cross_attention_2: assert cross_attention_2_dim is not None self.norm2_2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) self.attn2_2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_2_dim, dim_head=dim // num_attention_heads, heads=num_attention_heads, qk_norm="rms_norm" if qk_norm else None, cross_attention_norm=cross_attention_2_norm_type, eps=1e-6, bias=qkv_bias, processor=TripoSGAttnProcessor2_0(), ) # 3. Feed-forward self.norm3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) self.ff = FeedForward( dim, dropout=dropout, ### 0.0 activation_fn=activation_fn, ### approx GeLU final_dropout=final_dropout, ### 0.0 inner_dim=ff_inner_dim, ### int(dim * mlp_ratio) bias=ff_bias, ) # 4. Skip Connection if skip: self.skip_norm = FP32LayerNorm(dim, norm_eps, elementwise_affine=True) self.skip_linear = nn.Linear(2 * dim, dim) else: self.skip_linear = None # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_hidden_states_2: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, skip: Optional[torch.Tensor] = None, attention_kwargs: Optional[Dict[str, Any]] = None, ) -> torch.Tensor: # Prepare attention kwargs attention_kwargs = attention_kwargs or {} # Notice that normalization is always applied before the real computation in the following blocks. # 0. Long Skip Connection if self.skip_linear is not None: cat = torch.cat( ( [skip, hidden_states] if self.skip_concat_front else [hidden_states, skip] ), dim=-1, ) if self.skip_norm_last: # don't do this hidden_states = self.skip_linear(cat) hidden_states = self.skip_norm(hidden_states) else: cat = self.skip_norm(cat) hidden_states = self.skip_linear(cat) # 1. Self-Attention if self.use_self_attention: norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn1( norm_hidden_states, image_rotary_emb=image_rotary_emb, **attention_kwargs, ) hidden_states = hidden_states + attn_output # 2. Cross-Attention if self.use_cross_attention: if self.use_cross_attention_2: hidden_states = ( hidden_states + self.attn2( self.norm2(hidden_states), encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb, **attention_kwargs, ) + self.attn2_2( self.norm2_2(hidden_states), encoder_hidden_states=encoder_hidden_states_2, image_rotary_emb=image_rotary_emb, **attention_kwargs, ) ) else: hidden_states = hidden_states + self.attn2( self.norm2(hidden_states), encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb, **attention_kwargs, ) # FFN Layer ### TODO: switch norm2 and norm3 in the state dict mlp_inputs = self.norm3(hidden_states) hidden_states = hidden_states + self.ff(mlp_inputs) return hidden_states class TripoSGDiTModel(ModelMixin, ConfigMixin, PeftAdapterMixin): """ TripoSG: Diffusion model with a Transformer backbone. Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input and output (specify if the input is **continuous**). patch_size (`int`, *optional*): The size of the patch to use for the input. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. sample_size (`int`, *optional*): The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The number of dimension in the clip text embedding. hidden_size (`int`, *optional*): The size of hidden layer in the conditioning embedding layers. num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. mlp_ratio (`float`, *optional*, defaults to 4.0): The ratio of the hidden layer size to the input size. learn_sigma (`bool`, *optional*, defaults to `True`): Whether to predict variance. cross_attention_dim_t5 (`int`, *optional*): The number dimensions in t5 text embedding. pooled_projection_dim (`int`, *optional*): The size of the pooled projection. text_len (`int`, *optional*): The length of the clip text embedding. text_len_t5 (`int`, *optional*): The length of the T5 text embedding. use_style_cond_and_image_meta_size (`bool`, *optional*): Whether or not to use style condition and image meta size. True for version <=1.1, False for version >= 1.2 """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, num_attention_heads: int = 16, width: int = 2048, in_channels: int = 64, num_layers: int = 21, cross_attention_dim: int = 768, cross_attention_2_dim: int = 1024, ): super().__init__() self.out_channels = in_channels self.num_heads = num_attention_heads self.inner_dim = width self.mlp_ratio = 4.0 time_embed_dim, timestep_input_dim = self._set_time_proj( "positional", inner_dim=self.inner_dim, flip_sin_to_cos=False, freq_shift=0, time_embedding_dim=None, ) self.time_proj = TimestepEmbedding( timestep_input_dim, time_embed_dim, act_fn="gelu", out_dim=self.inner_dim ) self.proj_in = nn.Linear(self.config.in_channels, self.inner_dim, bias=True) self.blocks = nn.ModuleList( [ DiTBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, use_self_attention=True, use_cross_attention=True, self_attention_norm_type="fp32_layer_norm", cross_attention_dim=self.config.cross_attention_dim, cross_attention_norm_type=None, use_cross_attention_2=True, cross_attention_2_dim=self.config.cross_attention_2_dim, cross_attention_2_norm_type=None, activation_fn="gelu", norm_type="fp32_layer_norm", # TODO norm_eps=1e-5, ff_inner_dim=int(self.inner_dim * self.mlp_ratio), skip=layer > num_layers // 2, skip_concat_front=True, skip_norm_last=True, # this is an error qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. qkv_bias=False, ) for layer in range(num_layers) ] ) self.norm_out = LayerNorm(self.inner_dim) self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=True) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): self.gradient_checkpointing = value def _set_time_proj( self, time_embedding_type: str, inner_dim: int, flip_sin_to_cos: bool, freq_shift: float, time_embedding_dim: int, ) -> Tuple[int, int]: if time_embedding_type == "fourier": time_embed_dim = time_embedding_dim or inner_dim * 2 if time_embed_dim % 2 != 0: raise ValueError( f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}." ) self.time_embed = GaussianFourierProjection( time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos, ) timestep_input_dim = time_embed_dim elif time_embedding_type == "positional": time_embed_dim = time_embedding_dim or inner_dim * 4 self.time_embed = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) timestep_input_dim = inner_dim else: raise ValueError( f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." ) return time_embed_dim, timestep_input_dim # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedTripoSGAttnProcessor2_0 def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. This API is 🧪 experimental. """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError( "`fuse_qkv_projections()` is not supported for models having added KV projections." ) self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedTripoSGAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. This API is 🧪 experimental. """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors( name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor], ): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor( self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ self.set_attn_processor(TripoSGAttnProcessor2_0()) def forward( self, hidden_states: Optional[torch.Tensor], timestep: Union[int, float, torch.LongTensor], encoder_hidden_states: Optional[torch.Tensor] = None, encoder_hidden_states_2: Optional[torch.Tensor] = None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ): """ The [`HunyuanDiT2DModel`] forward method. Args: hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): The input tensor. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. encoder_hidden_states_2 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. return_dict: bool Whether to return a dictionary. """ if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if ( attention_kwargs is not None and attention_kwargs.get("scale", None) is not None ): logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) _, N, _ = hidden_states.shape temb = self.time_embed(timestep).to(hidden_states.dtype) temb = self.time_proj(temb) temb = temb.unsqueeze(dim=1) # unsqueeze to concat with hidden_states hidden_states = self.proj_in(hidden_states) # N + 1 token hidden_states = torch.cat([temb, hidden_states], dim=1) skips = [] for layer, block in enumerate(self.blocks): skip = None if layer <= self.config.num_layers // 2 else skips.pop() if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, encoder_hidden_states_2, temb, image_rotary_emb, skip, attention_kwargs, **ckpt_kwargs, ) else: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, encoder_hidden_states_2=encoder_hidden_states_2, temb=temb, image_rotary_emb=image_rotary_emb, skip=skip, attention_kwargs=attention_kwargs, ) # (N, L, D) if layer < self.config.num_layers // 2: skips.append(hidden_states) # final layer hidden_states = self.norm_out(hidden_states) hidden_states = hidden_states[:, -N:] hidden_states = self.proj_out(hidden_states) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (hidden_states,) return Transformer1DModelOutput(sample=hidden_states) # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking def enable_forward_chunking( self, chunk_size: Optional[int] = None, dim: int = 0 ) -> None: """ Sets the attention processor to use [feed forward chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). Parameters: chunk_size (`int`, *optional*): The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually over each tensor of dim=`dim`. dim (`int`, *optional*, defaults to `0`): The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length). """ if dim not in [0, 1]: raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") # By default chunk size is 1 chunk_size = chunk_size or 1 def fn_recursive_feed_forward( module: torch.nn.Module, chunk_size: int, dim: int ): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, chunk_size, dim) # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking def disable_forward_chunking(self): def fn_recursive_feed_forward( module: torch.nn.Module, chunk_size: int, dim: int ): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, None, 0)