Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,431 Bytes
3060fff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import os
import random
import shutil
import subprocess
from typing import List
import gradio as gr
import numpy as np
import spaces
import torch
from huggingface_hub import hf_hub_download, snapshot_download
from PIL import Image
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from inference_tg2mv_sdxl import prepare_pipeline, run_pipeline
from mvadapter.utils import get_orthogonal_camera, make_image_grid, tensor_to_image
# install others
subprocess.run("pip install spandrel==0.4.1 --no-deps", shell=True, check=True)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.float16
MAX_SEED = np.iinfo(np.int32).max
NUM_VIEWS = 6
HEIGHT = 768
WIDTH = 768
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
os.makedirs(TMP_DIR, exist_ok=True)
HEADER = """
# 🔮 Text to Texture with [MV-Adapter](https://github.com/huanngzh/MV-Adapter)
## State-of-the-art Open Source Texture Generation Using Multi-View Diffusion Model
"""
EXAMPLES = [
[
"examples/001.glb",
"Mater, a rusty and beat-up tow truck from the 2006 Disney/Pixar animated film 'Cars', with a rusty brown exterior, big blue eyes.",
],
[
"examples/002.glb",
"Optimus Prime, a character from Transformers, with blue, red and gray colors, and has a flame-like pattern on the body",
],
]
# MV-Adapter
pipe = prepare_pipeline(
base_model="stabilityai/stable-diffusion-xl-base-1.0",
vae_model="madebyollin/sdxl-vae-fp16-fix",
unet_model=None,
lora_model=None,
adapter_path="huanngzh/mv-adapter",
scheduler=None,
num_views=NUM_VIEWS,
device=DEVICE,
dtype=DTYPE,
)
if not os.path.exists("checkpoints/RealESRGAN_x2plus.pth"):
hf_hub_download(
"dtarnow/UPscaler", filename="RealESRGAN_x2plus.pth", local_dir="checkpoints"
)
if not os.path.exists("checkpoints/big-lama.pt"):
subprocess.run(
"wget -P checkpoints/ https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
shell=True,
check=True,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
def start_session(req: gr.Request):
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(save_dir, exist_ok=True)
print("start session, mkdir", save_dir)
def end_session(req: gr.Request):
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(save_dir)
def get_random_hex():
random_bytes = os.urandom(8)
random_hex = random_bytes.hex()
return random_hex
def get_random_seed(randomize_seed, seed):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(duration=90)
@torch.no_grad()
def run_mvadapter(
mesh_path,
prompt,
seed=42,
guidance_scale=7.0,
num_inference_steps=30,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
progress=gr.Progress(track_tqdm=True),
):
if isinstance(seed, str):
try:
seed = int(seed.strip())
except ValueError:
seed = 42
images, _, _, _ = run_pipeline(
pipe,
mesh_path=mesh_path,
num_views=NUM_VIEWS,
text=prompt,
height=HEIGHT,
width=WIDTH,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed,
negative_prompt=negative_prompt,
device=DEVICE,
)
torch.cuda.empty_cache()
return images
@spaces.GPU(duration=90)
@torch.no_grad()
def run_texturing(
mesh_path: str,
mv_images: List[Image.Image],
uv_unwarp: bool,
preprocess_mesh: bool,
uv_size: int,
req: gr.Request,
):
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
mv_images = [item[0] for item in mv_images]
make_image_grid(mv_images, rows=1).save(mv_image_path)
from texture import ModProcessConfig, TexturePipeline
texture_pipe = TexturePipeline(
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
inpaint_ckpt_path="checkpoints/big-lama.pt",
device=DEVICE,
)
textured_glb_path = texture_pipe(
mesh_path=mesh_path,
save_dir=save_dir,
save_name=f"texture_mesh_{get_random_hex()}",
uv_unwarp=uv_unwarp,
preprocess_mesh=preprocess_mesh,
uv_size=uv_size,
rgb_path=mv_image_path,
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
).shaded_model_save_path
torch.cuda.empty_cache()
return textured_glb_path, textured_glb_path
with gr.Blocks(title="MVAdapter") as demo:
gr.Markdown(HEADER)
with gr.Row():
with gr.Column():
input_mesh = gr.Model3D(label="Input 3D mesh")
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt")
with gr.Accordion("Generation Settings", open=False):
seed = gr.Slider(
label="Seed", minimum=0, maximum=MAX_SEED, step=0, value=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=8,
maximum=50,
step=1,
value=30,
)
guidance_scale = gr.Slider(
label="CFG scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=7.0,
)
with gr.Accordion("Texture Settings", open=False):
with gr.Row():
uv_unwarp = gr.Checkbox(label="Unwarp UV", value=True)
preprocess_mesh = gr.Checkbox(label="Preprocess Mesh", value=False)
uv_size = gr.Slider(
label="UV Size", minimum=1024, maximum=8192, step=512, value=4096
)
gen_button = gr.Button("Generate Texture", variant="primary")
examples = gr.Examples(examples=EXAMPLES, inputs=[input_mesh, prompt])
with gr.Column():
mv_result = gr.Gallery(
label="Multi-View Results",
show_label=False,
columns=[3],
rows=[2],
object_fit="contain",
height="auto",
type="pil",
)
textured_model_output = gr.Model3D(label="Textured GLB", interactive=False)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
gen_button.click(
get_random_seed, inputs=[randomize_seed, seed], outputs=[seed]
).then(
run_mvadapter,
inputs=[
input_mesh,
prompt,
seed,
guidance_scale,
num_inference_steps,
],
outputs=[mv_result],
).then(
run_texturing,
inputs=[input_mesh, mv_result, uv_unwarp, preprocess_mesh, uv_size],
outputs=[textured_model_output, download_glb],
).then(
lambda: gr.Button(interactive=True), outputs=[download_glb]
)
demo.load(start_session)
demo.unload(end_session)
demo.launch()
|