Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,310 Bytes
3060fff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import argparse
import torch
from diffusers import AutoencoderKL, DDPMScheduler, LCMScheduler, UNet2DConditionModel
from mvadapter.models.attention_processor import DecoupledMVRowColSelfAttnProcessor2_0
from mvadapter.pipelines.pipeline_mvadapter_t2mv_sdxl import MVAdapterT2MVSDXLPipeline
from mvadapter.schedulers.scheduling_shift_snr import ShiftSNRScheduler
from mvadapter.utils import get_orthogonal_camera, make_image_grid, tensor_to_image
from mvadapter.utils.render import NVDiffRastContextWrapper, load_mesh, render
def prepare_pipeline(
base_model,
vae_model,
unet_model,
lora_model,
adapter_path,
scheduler,
num_views,
device,
dtype,
):
# Load vae and unet if provided
pipe_kwargs = {}
if vae_model is not None:
pipe_kwargs["vae"] = AutoencoderKL.from_pretrained(vae_model)
if unet_model is not None:
pipe_kwargs["unet"] = UNet2DConditionModel.from_pretrained(unet_model)
# Prepare pipeline
pipe: MVAdapterT2MVSDXLPipeline
pipe = MVAdapterT2MVSDXLPipeline.from_pretrained(base_model, **pipe_kwargs)
# Load scheduler if provided
scheduler_class = None
if scheduler == "ddpm":
scheduler_class = DDPMScheduler
elif scheduler == "lcm":
scheduler_class = LCMScheduler
pipe.scheduler = ShiftSNRScheduler.from_scheduler(
pipe.scheduler,
shift_mode="interpolated",
shift_scale=8.0,
scheduler_class=scheduler_class,
)
pipe.init_custom_adapter(
num_views=num_views, self_attn_processor=DecoupledMVRowColSelfAttnProcessor2_0
)
pipe.load_custom_adapter(
adapter_path, weight_name="mvadapter_tg2mv_sdxl.safetensors"
)
pipe.to(device=device, dtype=dtype)
pipe.cond_encoder.to(device=device, dtype=dtype)
# load lora if provided
if lora_model is not None:
model_, name_ = lora_model.rsplit("/", 1)
pipe.load_lora_weights(model_, weight_name=name_)
return pipe
def run_pipeline(
pipe,
mesh_path,
num_views,
text,
height,
width,
num_inference_steps,
guidance_scale,
seed,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
lora_scale=1.0,
device="cuda",
):
# Prepare cameras
cameras = get_orthogonal_camera(
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
distance=[1.8] * num_views,
left=-0.55,
right=0.55,
bottom=-0.55,
top=0.55,
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
device=device,
)
ctx = NVDiffRastContextWrapper(device=device, context_type="cuda")
mesh = load_mesh(mesh_path, rescale=True, device=device)
render_out = render(
ctx,
mesh,
cameras,
height=height,
width=width,
render_attr=False,
normal_background=0.0,
)
pos_images = tensor_to_image((render_out.pos + 0.5).clamp(0, 1), batched=True)
normal_images = tensor_to_image(
(render_out.normal / 2 + 0.5).clamp(0, 1), batched=True
)
control_images = (
torch.cat(
[
(render_out.pos + 0.5).clamp(0, 1),
(render_out.normal / 2 + 0.5).clamp(0, 1),
],
dim=-1,
)
.permute(0, 3, 1, 2)
.to(device)
)
pipe_kwargs = {}
if seed != -1:
pipe_kwargs["generator"] = torch.Generator(device=device).manual_seed(seed)
images = pipe(
text,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_views,
control_image=control_images,
control_conditioning_scale=1.0,
negative_prompt=negative_prompt,
cross_attention_kwargs={"scale": lora_scale},
**pipe_kwargs,
).images
return images, pos_images, normal_images
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Models
parser.add_argument(
"--base_model", type=str, default="stabilityai/stable-diffusion-xl-base-1.0"
)
parser.add_argument(
"--vae_model", type=str, default="madebyollin/sdxl-vae-fp16-fix"
)
parser.add_argument("--unet_model", type=str, default=None)
parser.add_argument("--scheduler", type=str, default=None)
parser.add_argument("--lora_model", type=str, default=None)
parser.add_argument("--adapter_path", type=str, default="huanngzh/mv-adapter")
parser.add_argument("--num_views", type=int, default=6)
# Device
parser.add_argument("--device", type=str, default="cuda")
# Inference
parser.add_argument("--mesh", type=str, required=True)
parser.add_argument("--text", type=str, required=True)
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--guidance_scale", type=float, default=7.0)
parser.add_argument("--seed", type=int, default=-1)
parser.add_argument(
"--negative_prompt",
type=str,
default="watermark, ugly, deformed, noisy, blurry, low contrast",
)
parser.add_argument("--lora_scale", type=float, default=1.0)
parser.add_argument("--output", type=str, default="output.png")
args = parser.parse_args()
pipe = prepare_pipeline(
base_model=args.base_model,
vae_model=args.vae_model,
unet_model=args.unet_model,
lora_model=args.lora_model,
adapter_path=args.adapter_path,
scheduler=args.scheduler,
num_views=args.num_views,
device=args.device,
dtype=torch.float16,
)
images, pos_images, normal_images = run_pipeline(
pipe,
mesh_path=args.mesh,
num_views=args.num_views,
text=args.text,
height=768,
width=768,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
seed=args.seed,
negative_prompt=args.negative_prompt,
lora_scale=args.lora_scale,
device=args.device,
)
make_image_grid(images, rows=1).save(args.output)
make_image_grid(pos_images, rows=1).save(args.output.rsplit(".", 1)[0] + "_pos.png")
make_image_grid(normal_images, rows=1).save(
args.output.rsplit(".", 1)[0] + "_nor.png"
)
|