zouzx commited on
Commit
c839178
·
1 Parent(s): a870321

update gradio theme

Browse files
app.py CHANGED
@@ -114,8 +114,7 @@ def run_video(image_path: str,
114
 
115
  def launch(port):
116
  with gr.Blocks(
117
- title="TGS - Demo",
118
- theme=gr.themes.Monochrome()
119
  ) as demo:
120
  with gr.Row(variant='panel'):
121
  gr.Markdown(HEADER)
@@ -134,7 +133,13 @@ def launch(port):
134
  "example_images/a_pikachu_with_smily_face.webp",
135
  "example_images/an_otter_wearing_sunglasses.webp",
136
  "example_images/lumberjack_axe.webp",
137
- "example_images/medieval_shield.webp"
 
 
 
 
 
 
138
  ],
139
  inputs=[input_image],
140
  cache_examples=False,
@@ -145,7 +150,7 @@ def launch(port):
145
  with gr.Column(scale=1):
146
  with gr.Row(variant='panel'):
147
  seg_image = gr.Image(value=None, type="filepath", height=256, width=256, image_mode="RGBA", label="Segmented Image", interactive=False)
148
- output_video = gr.Video(value=None, label="Video", height=256, autoplay=True)
149
  output_3dgs = Model3DGS(value=None, label="3DGS")
150
 
151
  img_run_btn.click(
 
114
 
115
  def launch(port):
116
  with gr.Blocks(
117
+ title="TGS - Demo"
 
118
  ) as demo:
119
  with gr.Row(variant='panel'):
120
  gr.Markdown(HEADER)
 
133
  "example_images/a_pikachu_with_smily_face.webp",
134
  "example_images/an_otter_wearing_sunglasses.webp",
135
  "example_images/lumberjack_axe.webp",
136
+ "example_images/medieval_shield.webp",
137
+ "example_images/a_cat_dressed_as_the_pope.webp",
138
+ "example_images/a_cute_little_frog_comicbook_style.webp",
139
+ "example_images/a_purple_winter_jacket.webp",
140
+ "example_images/MP5,_high_quality,_ultra_realistic.webp",
141
+ "example_images/retro_pc_photorealistic_high_detailed.webp",
142
+ "example_images/stratocaster_guitar_pixar_style.webp"
143
  ],
144
  inputs=[input_image],
145
  cache_examples=False,
 
150
  with gr.Column(scale=1):
151
  with gr.Row(variant='panel'):
152
  seg_image = gr.Image(value=None, type="filepath", height=256, width=256, image_mode="RGBA", label="Segmented Image", interactive=False)
153
+ output_video = gr.Video(value=None, label="Rendered Video", height=256, autoplay=True)
154
  output_3dgs = Model3DGS(value=None, label="3DGS")
155
 
156
  img_run_btn.click(
example_images/MP5,_high_quality,_ultra_realistic.webp ADDED
example_images/a_cat_dressed_as_the_pope.webp ADDED
example_images/a_cute_little_frog_comicbook_style.webp ADDED
example_images/a_purple_winter_jacket.webp ADDED
example_images/retro_pc_photorealistic_high_detailed.webp ADDED
example_images/stratocaster_guitar_pixar_style.webp ADDED
utils.py CHANGED
@@ -12,7 +12,6 @@ from tqdm import tqdm
12
 
13
 
14
  def sam_init(sam_checkpoint, device_id=0):
15
- # sam_checkpoint = os.path.join(os.path.dirname(__file__), "./sam_vit_h_4b8939.pth")
16
  model_type = "vit_h"
17
 
18
  device = "cuda:{}".format(device_id) if torch.cuda.is_available() else "cpu"
@@ -26,7 +25,6 @@ def sam_out_nosave(predictor, input_image, *bbox_sliders):
26
  bbox = np.array(bbox_sliders)
27
  image = np.asarray(input_image)
28
 
29
- start_time = time.time()
30
  predictor.set_image(image)
31
 
32
  masks_bbox, scores_bbox, logits_bbox = predictor.predict(
@@ -73,11 +71,6 @@ def image_preprocess(input_image, save_path, lower_contrast=True, rescale=True):
73
  rgba = Image.fromarray(padded_image).resize((256, 256), Image.LANCZOS)
74
  rgba.save(save_path)
75
 
76
- # rgba_arr = np.array(rgba) / 255.0
77
- # rgb = rgba_arr[...,:3] * rgba_arr[...,-1:] + (1 - rgba_arr[...,-1:])
78
- # return Image.fromarray((rgb * 255).astype(np.uint8))
79
-
80
-
81
  def pred_bbox(image):
82
  image_nobg = remove(image.convert("RGBA"), alpha_matting=True)
83
  alpha = np.asarray(image_nobg)[:, :, -1]
@@ -117,19 +110,3 @@ def todevice(vars, device="cuda"):
117
  return vars
118
  else:
119
  raise NotImplementedError("invalid input type {} for tensor2numpy".format(type(vars)))
120
-
121
- def download_checkpoint(url, save_path):
122
- try:
123
- with urllib.request.urlopen(url) as response, open(save_path, 'wb') as file:
124
- file_size = int(response.info().get('Content-Length', -1))
125
- chunk_size = 8192
126
- num_chunks = file_size // chunk_size if file_size > chunk_size else 1
127
-
128
- with tqdm(total=file_size, unit='B', unit_scale=True, desc='Downloading', ncols=100) as pbar:
129
- for chunk in iter(lambda: response.read(chunk_size), b''):
130
- file.write(chunk)
131
- pbar.update(len(chunk))
132
-
133
- print(f"Checkpoint downloaded and saved to: {save_path}")
134
- except Exception as e:
135
- print(f"Error downloading checkpoint: {e}")
 
12
 
13
 
14
  def sam_init(sam_checkpoint, device_id=0):
 
15
  model_type = "vit_h"
16
 
17
  device = "cuda:{}".format(device_id) if torch.cuda.is_available() else "cpu"
 
25
  bbox = np.array(bbox_sliders)
26
  image = np.asarray(input_image)
27
 
 
28
  predictor.set_image(image)
29
 
30
  masks_bbox, scores_bbox, logits_bbox = predictor.predict(
 
71
  rgba = Image.fromarray(padded_image).resize((256, 256), Image.LANCZOS)
72
  rgba.save(save_path)
73
 
 
 
 
 
 
74
  def pred_bbox(image):
75
  image_nobg = remove(image.convert("RGBA"), alpha_matting=True)
76
  alpha = np.asarray(image_nobg)[:, :, -1]
 
110
  return vars
111
  else:
112
  raise NotImplementedError("invalid input type {} for tensor2numpy".format(type(vars)))