Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
a43a8dc
0
Parent(s):
init commit
Browse files- .gitattributes +36 -0
- README.md +12 -0
- app.py +469 -0
- requirements.txt +23 -0
- texture.cpython-310-x86_64-linux-gnu.so +3 -0
- utils.py +23 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
texture.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: TripoSG
|
3 |
+
emoji: 🔮
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.23.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,469 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import trimesh
|
8 |
+
import random
|
9 |
+
from transformers import AutoModelForImageSegmentation
|
10 |
+
from torchvision import transforms
|
11 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
12 |
+
import subprocess
|
13 |
+
import shutil
|
14 |
+
|
15 |
+
# install others
|
16 |
+
subprocess.run("pip install spandrel==0.4.1 --no-deps", shell=True, check=True)
|
17 |
+
|
18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
DTYPE = torch.float16
|
20 |
+
|
21 |
+
print("DEVICE: ", DEVICE)
|
22 |
+
|
23 |
+
DEFAULT_FACE_NUMBER = 100000
|
24 |
+
MAX_SEED = np.iinfo(np.int32).max
|
25 |
+
TRIPOSG_REPO_URL = "https://github.com/VAST-AI-Research/TripoSG.git"
|
26 |
+
MV_ADAPTER_REPO_URL = "https://github.com/huanngzh/MV-Adapter.git"
|
27 |
+
|
28 |
+
RMBG_PRETRAINED_MODEL = "checkpoints/RMBG-1.4"
|
29 |
+
TRIPOSG_PRETRAINED_MODEL = "checkpoints/TripoSG"
|
30 |
+
|
31 |
+
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp")
|
32 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
33 |
+
|
34 |
+
TRIPOSG_CODE_DIR = "./triposg"
|
35 |
+
if not os.path.exists(TRIPOSG_CODE_DIR):
|
36 |
+
os.system(f"git clone {TRIPOSG_REPO_URL} {TRIPOSG_CODE_DIR}")
|
37 |
+
|
38 |
+
MV_ADAPTER_CODE_DIR = "./mv_adapter"
|
39 |
+
if not os.path.exists(MV_ADAPTER_CODE_DIR):
|
40 |
+
os.system(f"git clone {MV_ADAPTER_REPO_URL} {MV_ADAPTER_CODE_DIR}")
|
41 |
+
|
42 |
+
import sys
|
43 |
+
sys.path.append(TRIPOSG_CODE_DIR)
|
44 |
+
sys.path.append(os.path.join(TRIPOSG_CODE_DIR, "scripts"))
|
45 |
+
sys.path.append(MV_ADAPTER_CODE_DIR)
|
46 |
+
sys.path.append(os.path.join(MV_ADAPTER_CODE_DIR, "scripts"))
|
47 |
+
|
48 |
+
HEADER = """
|
49 |
+
|
50 |
+
# 🔮 Image to 3D with [TripoSG](https://github.com/VAST-AI-Research/TripoSG)
|
51 |
+
|
52 |
+
## State-of-the-art Open Source 3D Generation Using Large-Scale Rectified Flow Transformers
|
53 |
+
|
54 |
+
<p style="font-size: 1.1em;">By <a href="https://www.tripo3d.ai/" style="color: #1E90FF; text-decoration: none; font-weight: bold;">Tripo</a></p>
|
55 |
+
|
56 |
+
## 📋 Quick Start Guide:
|
57 |
+
1. **Upload an image** (single object works best)
|
58 |
+
2. Click **Generate Shape** to create the 3D mesh
|
59 |
+
3. Click **Apply Texture** to add textures
|
60 |
+
4. Use **Download GLB** to save your 3D model
|
61 |
+
5. Adjust parameters under **Generation Settings** for fine-tuning
|
62 |
+
|
63 |
+
Best results come from clean, well-lit images with clear subject isolation. Try it now!
|
64 |
+
|
65 |
+
<p style="font-size: 0.9em; margin-top: 10px;">Texture generation powered by <a href="https://github.com/huanngzh/MV-Adapter" style="color: #1E90FF; text-decoration: none;">MV-Adapter</a> - a versatile multi-view adapter for consistent texture generation. Try the <a href="https://huggingface.co/spaces/VAST-AI/MV-Adapter-I2MV-SDXL" style="color: #1E90FF; text-decoration: none;">MV-Adapter demo</a> for multi-view image generation.</p>
|
66 |
+
|
67 |
+
"""
|
68 |
+
|
69 |
+
# # triposg
|
70 |
+
from image_process import prepare_image
|
71 |
+
from briarmbg import BriaRMBG
|
72 |
+
snapshot_download("briaai/RMBG-1.4", local_dir=RMBG_PRETRAINED_MODEL)
|
73 |
+
rmbg_net = BriaRMBG.from_pretrained(RMBG_PRETRAINED_MODEL).to(DEVICE)
|
74 |
+
rmbg_net.eval()
|
75 |
+
from triposg.pipelines.pipeline_triposg import TripoSGPipeline
|
76 |
+
snapshot_download("VAST-AI/TripoSG", local_dir=TRIPOSG_PRETRAINED_MODEL)
|
77 |
+
triposg_pipe = TripoSGPipeline.from_pretrained(TRIPOSG_PRETRAINED_MODEL).to(DEVICE, DTYPE)
|
78 |
+
|
79 |
+
# mv adapter
|
80 |
+
NUM_VIEWS = 6
|
81 |
+
from inference_ig2mv_sdxl import prepare_pipeline, preprocess_image, remove_bg
|
82 |
+
from mvadapter.utils import get_orthogonal_camera, tensor_to_image, make_image_grid
|
83 |
+
from mvadapter.utils.render import NVDiffRastContextWrapper, load_mesh, render
|
84 |
+
mv_adapter_pipe = prepare_pipeline(
|
85 |
+
base_model="stabilityai/stable-diffusion-xl-base-1.0",
|
86 |
+
vae_model="madebyollin/sdxl-vae-fp16-fix",
|
87 |
+
unet_model=None,
|
88 |
+
lora_model=None,
|
89 |
+
adapter_path="huanngzh/mv-adapter",
|
90 |
+
scheduler=None,
|
91 |
+
num_views=NUM_VIEWS,
|
92 |
+
device=DEVICE,
|
93 |
+
dtype=torch.float16,
|
94 |
+
)
|
95 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
96 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
97 |
+
)
|
98 |
+
birefnet.to(DEVICE)
|
99 |
+
transform_image = transforms.Compose(
|
100 |
+
[
|
101 |
+
transforms.Resize((1024, 1024)),
|
102 |
+
transforms.ToTensor(),
|
103 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
104 |
+
]
|
105 |
+
)
|
106 |
+
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, DEVICE)
|
107 |
+
|
108 |
+
if not os.path.exists("checkpoints/RealESRGAN_x2plus.pth"):
|
109 |
+
hf_hub_download("dtarnow/UPscaler", filename="RealESRGAN_x2plus.pth", local_dir="checkpoints")
|
110 |
+
if not os.path.exists("checkpoints/big-lama.pt"):
|
111 |
+
subprocess.run("wget -P checkpoints/ https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt", shell=True, check=True)
|
112 |
+
|
113 |
+
def start_session(req: gr.Request):
|
114 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
115 |
+
os.makedirs(save_dir, exist_ok=True)
|
116 |
+
print("start session, mkdir", save_dir)
|
117 |
+
|
118 |
+
def end_session(req: gr.Request):
|
119 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
120 |
+
shutil.rmtree(save_dir)
|
121 |
+
|
122 |
+
def get_random_hex():
|
123 |
+
random_bytes = os.urandom(8)
|
124 |
+
random_hex = random_bytes.hex()
|
125 |
+
return random_hex
|
126 |
+
|
127 |
+
def get_random_seed(randomize_seed, seed):
|
128 |
+
if randomize_seed:
|
129 |
+
seed = random.randint(0, MAX_SEED)
|
130 |
+
return seed
|
131 |
+
|
132 |
+
@spaces.GPU(duration=180)
|
133 |
+
def run_full(image: str, req: gr.Request):
|
134 |
+
seed = 0
|
135 |
+
num_inference_steps = 50
|
136 |
+
guidance_scale = 7.5
|
137 |
+
simplify = True
|
138 |
+
target_face_num = DEFAULT_FACE_NUMBER
|
139 |
+
|
140 |
+
image_seg = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
141 |
+
|
142 |
+
outputs = triposg_pipe(
|
143 |
+
image=image_seg,
|
144 |
+
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
145 |
+
num_inference_steps=num_inference_steps,
|
146 |
+
guidance_scale=guidance_scale
|
147 |
+
).samples[0]
|
148 |
+
print("mesh extraction done")
|
149 |
+
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
|
150 |
+
|
151 |
+
if simplify:
|
152 |
+
print("start simplify")
|
153 |
+
from utils import simplify_mesh
|
154 |
+
mesh = simplify_mesh(mesh, target_face_num)
|
155 |
+
|
156 |
+
save_dir = os.path.join(TMP_DIR, "examples")
|
157 |
+
os.makedirs(save_dir, exist_ok=True)
|
158 |
+
mesh_path = os.path.join(save_dir, f"triposg_{get_random_hex()}.glb")
|
159 |
+
mesh.export(mesh_path)
|
160 |
+
print("save to ", mesh_path)
|
161 |
+
|
162 |
+
torch.cuda.empty_cache()
|
163 |
+
|
164 |
+
height, width = 768, 768
|
165 |
+
# Prepare cameras
|
166 |
+
cameras = get_orthogonal_camera(
|
167 |
+
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
168 |
+
distance=[1.8] * NUM_VIEWS,
|
169 |
+
left=-0.55,
|
170 |
+
right=0.55,
|
171 |
+
bottom=-0.55,
|
172 |
+
top=0.55,
|
173 |
+
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
174 |
+
device=DEVICE,
|
175 |
+
)
|
176 |
+
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
|
177 |
+
|
178 |
+
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
|
179 |
+
render_out = render(
|
180 |
+
ctx,
|
181 |
+
mesh,
|
182 |
+
cameras,
|
183 |
+
height=height,
|
184 |
+
width=width,
|
185 |
+
render_attr=False,
|
186 |
+
normal_background=0.0,
|
187 |
+
)
|
188 |
+
control_images = (
|
189 |
+
torch.cat(
|
190 |
+
[
|
191 |
+
(render_out.pos + 0.5).clamp(0, 1),
|
192 |
+
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
193 |
+
],
|
194 |
+
dim=-1,
|
195 |
+
)
|
196 |
+
.permute(0, 3, 1, 2)
|
197 |
+
.to(DEVICE)
|
198 |
+
)
|
199 |
+
|
200 |
+
image = Image.open(image)
|
201 |
+
image = remove_bg_fn(image)
|
202 |
+
image = preprocess_image(image, height, width)
|
203 |
+
|
204 |
+
pipe_kwargs = {}
|
205 |
+
if seed != -1 and isinstance(seed, int):
|
206 |
+
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
207 |
+
|
208 |
+
images = mv_adapter_pipe(
|
209 |
+
"high quality",
|
210 |
+
height=height,
|
211 |
+
width=width,
|
212 |
+
num_inference_steps=15,
|
213 |
+
guidance_scale=3.0,
|
214 |
+
num_images_per_prompt=NUM_VIEWS,
|
215 |
+
control_image=control_images,
|
216 |
+
control_conditioning_scale=1.0,
|
217 |
+
reference_image=image,
|
218 |
+
reference_conditioning_scale=1.0,
|
219 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
220 |
+
cross_attention_kwargs={"scale": 1.0},
|
221 |
+
**pipe_kwargs,
|
222 |
+
).images
|
223 |
+
|
224 |
+
torch.cuda.empty_cache()
|
225 |
+
|
226 |
+
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
227 |
+
make_image_grid(images, rows=1).save(mv_image_path)
|
228 |
+
|
229 |
+
from texture import TexturePipeline, ModProcessConfig
|
230 |
+
texture_pipe = TexturePipeline(
|
231 |
+
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
|
232 |
+
inpaint_ckpt_path="checkpoints/big-lama.pt",
|
233 |
+
device=DEVICE,
|
234 |
+
)
|
235 |
+
|
236 |
+
textured_glb_path = texture_pipe(
|
237 |
+
mesh_path=mesh_path,
|
238 |
+
save_dir=save_dir,
|
239 |
+
save_name=f"texture_mesh_{get_random_hex()}.glb",
|
240 |
+
uv_unwarp=True,
|
241 |
+
uv_size=4096,
|
242 |
+
rgb_path=mv_image_path,
|
243 |
+
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
244 |
+
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
245 |
+
)
|
246 |
+
|
247 |
+
return image_seg, mesh_path, textured_glb_path
|
248 |
+
|
249 |
+
|
250 |
+
@spaces.GPU()
|
251 |
+
@torch.no_grad()
|
252 |
+
def run_segmentation(image: str):
|
253 |
+
image = prepare_image(image, bg_color=np.array([1.0, 1.0, 1.0]), rmbg_net=rmbg_net)
|
254 |
+
return image
|
255 |
+
|
256 |
+
@spaces.GPU(duration=90)
|
257 |
+
@torch.no_grad()
|
258 |
+
def image_to_3d(
|
259 |
+
image: Image.Image,
|
260 |
+
seed: int,
|
261 |
+
num_inference_steps: int,
|
262 |
+
guidance_scale: float,
|
263 |
+
simplify: bool,
|
264 |
+
target_face_num: int,
|
265 |
+
req: gr.Request
|
266 |
+
):
|
267 |
+
outputs = triposg_pipe(
|
268 |
+
image=image,
|
269 |
+
generator=torch.Generator(device=triposg_pipe.device).manual_seed(seed),
|
270 |
+
num_inference_steps=num_inference_steps,
|
271 |
+
guidance_scale=guidance_scale
|
272 |
+
).samples[0]
|
273 |
+
print("mesh extraction done")
|
274 |
+
mesh = trimesh.Trimesh(outputs[0].astype(np.float32), np.ascontiguousarray(outputs[1]))
|
275 |
+
|
276 |
+
if simplify:
|
277 |
+
print("start simplify")
|
278 |
+
from utils import simplify_mesh
|
279 |
+
mesh = simplify_mesh(mesh, target_face_num)
|
280 |
+
|
281 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
282 |
+
mesh_path = os.path.join(save_dir, f"triposg_{get_random_hex()}.glb")
|
283 |
+
mesh.export(mesh_path)
|
284 |
+
print("save to ", mesh_path)
|
285 |
+
|
286 |
+
torch.cuda.empty_cache()
|
287 |
+
|
288 |
+
return mesh_path
|
289 |
+
|
290 |
+
@spaces.GPU(duration=120)
|
291 |
+
@torch.no_grad()
|
292 |
+
def run_texture(image: Image, mesh_path: str, seed: int, req: gr.Request):
|
293 |
+
height, width = 768, 768
|
294 |
+
# Prepare cameras
|
295 |
+
cameras = get_orthogonal_camera(
|
296 |
+
elevation_deg=[0, 0, 0, 0, 89.99, -89.99],
|
297 |
+
distance=[1.8] * NUM_VIEWS,
|
298 |
+
left=-0.55,
|
299 |
+
right=0.55,
|
300 |
+
bottom=-0.55,
|
301 |
+
top=0.55,
|
302 |
+
azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
303 |
+
device=DEVICE,
|
304 |
+
)
|
305 |
+
ctx = NVDiffRastContextWrapper(device=DEVICE, context_type="cuda")
|
306 |
+
|
307 |
+
mesh = load_mesh(mesh_path, rescale=True, device=DEVICE)
|
308 |
+
render_out = render(
|
309 |
+
ctx,
|
310 |
+
mesh,
|
311 |
+
cameras,
|
312 |
+
height=height,
|
313 |
+
width=width,
|
314 |
+
render_attr=False,
|
315 |
+
normal_background=0.0,
|
316 |
+
)
|
317 |
+
control_images = (
|
318 |
+
torch.cat(
|
319 |
+
[
|
320 |
+
(render_out.pos + 0.5).clamp(0, 1),
|
321 |
+
(render_out.normal / 2 + 0.5).clamp(0, 1),
|
322 |
+
],
|
323 |
+
dim=-1,
|
324 |
+
)
|
325 |
+
.permute(0, 3, 1, 2)
|
326 |
+
.to(DEVICE)
|
327 |
+
)
|
328 |
+
|
329 |
+
image = Image.open(image)
|
330 |
+
image = remove_bg_fn(image)
|
331 |
+
image = preprocess_image(image, height, width)
|
332 |
+
|
333 |
+
pipe_kwargs = {}
|
334 |
+
if seed != -1 and isinstance(seed, int):
|
335 |
+
pipe_kwargs["generator"] = torch.Generator(device=DEVICE).manual_seed(seed)
|
336 |
+
|
337 |
+
images = mv_adapter_pipe(
|
338 |
+
"high quality",
|
339 |
+
height=height,
|
340 |
+
width=width,
|
341 |
+
num_inference_steps=15,
|
342 |
+
guidance_scale=3.0,
|
343 |
+
num_images_per_prompt=NUM_VIEWS,
|
344 |
+
control_image=control_images,
|
345 |
+
control_conditioning_scale=1.0,
|
346 |
+
reference_image=image,
|
347 |
+
reference_conditioning_scale=1.0,
|
348 |
+
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
|
349 |
+
cross_attention_kwargs={"scale": 1.0},
|
350 |
+
**pipe_kwargs,
|
351 |
+
).images
|
352 |
+
|
353 |
+
torch.cuda.empty_cache()
|
354 |
+
|
355 |
+
save_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
356 |
+
mv_image_path = os.path.join(save_dir, f"mv_adapter_{get_random_hex()}.png")
|
357 |
+
make_image_grid(images, rows=1).save(mv_image_path)
|
358 |
+
|
359 |
+
from texture import TexturePipeline, ModProcessConfig
|
360 |
+
texture_pipe = TexturePipeline(
|
361 |
+
upscaler_ckpt_path="checkpoints/RealESRGAN_x2plus.pth",
|
362 |
+
inpaint_ckpt_path="checkpoints/big-lama.pt",
|
363 |
+
device=DEVICE,
|
364 |
+
)
|
365 |
+
|
366 |
+
textured_glb_path = texture_pipe(
|
367 |
+
mesh_path=mesh_path,
|
368 |
+
save_dir=save_dir,
|
369 |
+
save_name=f"texture_mesh_{get_random_hex()}.glb",
|
370 |
+
uv_unwarp=True,
|
371 |
+
uv_size=4096,
|
372 |
+
rgb_path=mv_image_path,
|
373 |
+
rgb_process_config=ModProcessConfig(view_upscale=True, inpaint_mode="view"),
|
374 |
+
camera_azimuth_deg=[x - 90 for x in [0, 90, 180, 270, 180, 180]],
|
375 |
+
)
|
376 |
+
|
377 |
+
return textured_glb_path, textured_glb_path
|
378 |
+
|
379 |
+
|
380 |
+
with gr.Blocks(title="TripoSG") as demo:
|
381 |
+
gr.Markdown(HEADER)
|
382 |
+
|
383 |
+
with gr.Row():
|
384 |
+
with gr.Column():
|
385 |
+
with gr.Row():
|
386 |
+
image_prompts = gr.Image(label="Input Image", type="filepath")
|
387 |
+
seg_image = gr.Image(
|
388 |
+
label="Segmentation Result", type="pil", format="png", interactive=False
|
389 |
+
)
|
390 |
+
|
391 |
+
with gr.Accordion("Generation Settings", open=True):
|
392 |
+
seed = gr.Slider(
|
393 |
+
label="Seed",
|
394 |
+
minimum=0,
|
395 |
+
maximum=MAX_SEED,
|
396 |
+
step=0,
|
397 |
+
value=0
|
398 |
+
)
|
399 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
400 |
+
num_inference_steps = gr.Slider(
|
401 |
+
label="Number of inference steps",
|
402 |
+
minimum=8,
|
403 |
+
maximum=50,
|
404 |
+
step=1,
|
405 |
+
value=50,
|
406 |
+
)
|
407 |
+
guidance_scale = gr.Slider(
|
408 |
+
label="CFG scale",
|
409 |
+
minimum=0.0,
|
410 |
+
maximum=20.0,
|
411 |
+
step=0.1,
|
412 |
+
value=7.0,
|
413 |
+
)
|
414 |
+
|
415 |
+
with gr.Row():
|
416 |
+
reduce_face = gr.Checkbox(label="Simplify Mesh", value=True)
|
417 |
+
target_face_num = gr.Slider(maximum=1000000, minimum=10000, value=DEFAULT_FACE_NUMBER, label="Target Face Number")
|
418 |
+
|
419 |
+
gen_button = gr.Button("Generate Shape", variant="primary")
|
420 |
+
gen_texture_button = gr.Button("Apply Texture", interactive=False)
|
421 |
+
download_glb = gr.DownloadButton("Download GLB", interactive=False)
|
422 |
+
|
423 |
+
with gr.Column():
|
424 |
+
model_output = gr.Model3D(label="Generated GLB", interactive=False)
|
425 |
+
textured_model_output = gr.Model3D(label="Textured GLB", interactive=False)
|
426 |
+
|
427 |
+
with gr.Row():
|
428 |
+
examples = gr.Examples(
|
429 |
+
examples=[
|
430 |
+
f"{TRIPOSG_CODE_DIR}/assets/example_data/{image}"
|
431 |
+
for image in os.listdir(f"{TRIPOSG_CODE_DIR}/assets/example_data")
|
432 |
+
],
|
433 |
+
fn=run_full,
|
434 |
+
inputs=[image_prompts],
|
435 |
+
outputs=[seg_image, model_output, textured_model_output],
|
436 |
+
cache_examples=True,
|
437 |
+
)
|
438 |
+
|
439 |
+
gen_button.click(
|
440 |
+
run_segmentation,
|
441 |
+
inputs=[image_prompts],
|
442 |
+
outputs=[seg_image]
|
443 |
+
).then(
|
444 |
+
get_random_seed,
|
445 |
+
inputs=[randomize_seed, seed],
|
446 |
+
outputs=[seed],
|
447 |
+
).then(
|
448 |
+
image_to_3d,
|
449 |
+
inputs=[
|
450 |
+
seg_image,
|
451 |
+
seed,
|
452 |
+
num_inference_steps,
|
453 |
+
guidance_scale,
|
454 |
+
reduce_face,
|
455 |
+
target_face_num
|
456 |
+
],
|
457 |
+
outputs=[model_output]
|
458 |
+
).then(lambda: gr.Button(interactive=True), outputs=[download_glb]).then(lambda: gr.Button(interactive=True), outputs=[gen_texture_button])
|
459 |
+
|
460 |
+
gen_texture_button.click(
|
461 |
+
run_texture,
|
462 |
+
inputs=[image_prompts, model_output, seed],
|
463 |
+
outputs=[textured_model_output, download_glb]
|
464 |
+
)
|
465 |
+
|
466 |
+
demo.load(start_session)
|
467 |
+
demo.unload(end_session)
|
468 |
+
|
469 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torchvision
|
2 |
+
diffusers
|
3 |
+
transformers==4.49.0
|
4 |
+
einops
|
5 |
+
huggingface_hub
|
6 |
+
opencv-python
|
7 |
+
trimesh==4.5.3
|
8 |
+
omegaconf
|
9 |
+
scikit-image
|
10 |
+
numpy
|
11 |
+
peft
|
12 |
+
scipy==1.11.4
|
13 |
+
jaxtyping
|
14 |
+
typeguard
|
15 |
+
pymeshlab==2022.2.post4
|
16 |
+
open3d
|
17 |
+
timm
|
18 |
+
kornia
|
19 |
+
ninja
|
20 |
+
https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl?download=true
|
21 |
+
cvcuda_cu12
|
22 |
+
gltflib
|
23 |
+
torch-cluster
|
texture.cpython-310-x86_64-linux-gnu.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20c019f3aa6342b1b4de710d1f4ef4d070cb23615cce54324a7571a8a88d5e46
|
3 |
+
size 2069048
|
utils.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pymeshlab
|
2 |
+
import trimesh
|
3 |
+
import open3d as o3d
|
4 |
+
|
5 |
+
def mesh_to_pymesh(vertices, faces):
|
6 |
+
mesh = pymeshlab.Mesh(vertex_matrix=vertices, face_matrix=faces)
|
7 |
+
ms = pymeshlab.MeshSet()
|
8 |
+
ms.add_mesh(mesh)
|
9 |
+
return ms
|
10 |
+
|
11 |
+
def pymesh_to_trimesh(mesh):
|
12 |
+
verts = mesh.vertex_matrix()#.tolist()
|
13 |
+
faces = mesh.face_matrix()#.tolist()
|
14 |
+
return trimesh.Trimesh(vertices=verts, faces=faces) #, vID, fID
|
15 |
+
|
16 |
+
def simplify_mesh(mesh: trimesh.Trimesh, n_faces):
|
17 |
+
if mesh.faces.shape[0] > n_faces:
|
18 |
+
ms = mesh_to_pymesh(mesh.vertices, mesh.faces)
|
19 |
+
ms.meshing_merge_close_vertices()
|
20 |
+
ms.meshing_decimation_quadric_edge_collapse(targetfacenum = n_faces)
|
21 |
+
return pymesh_to_trimesh(ms.current_mesh())
|
22 |
+
else:
|
23 |
+
return mesh
|