File size: 7,617 Bytes
1252e4e
b10f48a
 
 
 
1252e4e
 
b10f48a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252e4e
b10f48a
1252e4e
 
 
 
 
b10f48a
1252e4e
 
 
 
 
 
b10f48a
1252e4e
 
b10f48a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1252e4e
b10f48a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import streamlit as st
import torch
import librosa
import matplotlib.pyplot as plt
from PIL import Image
import os

# Import the required functions and classes from your previous code
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import torchaudio
import torch
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
)
from IndicTransToolkit import IndicProcessor
from transformers import BitsAndBytesConfig
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler
from diffusers import StableDiffusionImg2ImgPipeline
import stanza

# Ensure you have the same TransGen class and other supporting functions from your previous implementation
class TransGen:
    def __init__(self, translation_model="ai4bharat/indictrans2-indic-en-1B", 
                 stable_diff_model="stabilityai/stable-diffusion-2-base", 
                 src_lang='hin_Deva', tgt_lang='eng_Latn'):
        # Same implementation as in your previous code
        self.bnb_config = BitsAndBytesConfig(load_in_4bit=True)
        self.tokenizer = AutoTokenizer.from_pretrained(translation_model, trust_remote_code=True)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(translation_model, trust_remote_code=True, quantization_config=self.bnb_config)
        self.ip = IndicProcessor(inference=True)
        self.src_lang = src_lang
        self.tgt_lang = tgt_lang

        scheduler = EulerDiscreteScheduler.from_pretrained(stable_diff_model, subfolder="scheduler")
        self.pipe = StableDiffusionPipeline.from_pretrained(stable_diff_model, scheduler=scheduler, torch_dtype=torch.bfloat16)
        self.pipe = self.pipe.to("cuda")

        self.img2img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(stable_diff_model, torch_dtype=torch.float16)
        self.img2img_pipe = self.img2img_pipe.to('cuda')

    def translate(self, input_sentences):
        # Same implementation as in your previous code
        batch = self.ip.preprocess_batch(
            input_sentences,
            src_lang=self.src_lang,
            tgt_lang=self.tgt_lang,
        )
        inputs = self.tokenizer(
            batch,
            truncation=True,
            padding="longest",
            return_tensors="pt",
            return_attention_mask=True,
        )

        with torch.no_grad():
            generated_tokens = self.model.generate(
                **inputs,
                use_cache=True,
                min_length=0,
                max_length=256,
                num_beams=5,
                num_return_sequences=1,
            )

        with self.tokenizer.as_target_tokenizer():
            generated_tokens = self.tokenizer.batch_decode(
                generated_tokens.detach().cpu().tolist(),
                skip_special_tokens=True,
                clean_up_tokenization_spaces=True,
            )

        translations = self.ip.postprocess_batch(generated_tokens, lang=self.tgt_lang)

        return translations

    def generate_image(self, prompt, prev_image, strength=1.0, guidance_scale=7.5):
        # Same implementation as in your previous code
        strength = float(strength) if strength is not None else 1.0
        guidance_scale = float(guidance_scale) if guidance_scale is not None else 7.5
        
        strength = max(0.0, min(1.0, strength))
        
        if prev_image is not None:
            image = self.img2img_pipe(
                prompt, 
                image=prev_image,
                strength=strength, 
                guidance_scale=guidance_scale,
                negative_prompt='generate text in image'
            ).images[0]
            return image
        
        image = self.pipe(prompt)
        return image.images[0]

    def run(self, input_sentences, strength, guidance_scale, prev_image=None):
        # Same implementation as in your previous code
        translations = self.translate(input_sentences)
        sentence = translations[0]
        image = self.generate_image(sentence, prev_image, strength, guidance_scale)
        return sentence, image

# Initialize global variables
stanza.download('hi')
transgen = TransGen()

def transcribe_audio_to_hindi(audio_path: str) -> str:
    # Same implementation as in your previous code
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

    model_id = "openai/whisper-large-v3"
    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
    )
    model.to(device)

    processor = AutoProcessor.from_pretrained(model_id)

    whisper_pipe = pipeline(
        "automatic-speech-recognition",
        model=model,
        tokenizer=processor.tokenizer,
        feature_extractor=processor.feature_extractor,
        torch_dtype=torch_dtype,
        device=device,
        model_kwargs={"language": "hi"}  
    )

    waveform, sample_rate = torchaudio.load(audio_path)

    if sample_rate != 16000:
        resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
        waveform = resampler(waveform)

    result = whisper_pipe(waveform.squeeze(0).cpu().numpy(), return_timestamps=True)
    return result["text"]

nlp = stanza.Pipeline(lang='hi', processors='tokenize,pos')

def POS_policy(input):
    # Same implementation as in your previous code
    lst = input
    doc = nlp(lst)
    words = doc.sentences[-1].words
    n = len(words)
    i = n-1
    while(i):
        if words[i].upos == 'NOUN' or words[i].upos == 'VERB':
            return i
        else:
            pass
        i -= 1
    return 0

def generate_images_from_audio(audio_path, base_strength=0.8, base_guidance_scale=12):
    # Similar implementation with modifications for Streamlit
    text_tot = transcribe_audio_to_hindi(audio_path)
    
    st.write(f'Transcripted sentence: {text_tot}')
    
    cur_sent = ''
    prev_idx = 0
    generated_images = []
    
    for word in text_tot.split():
        cur_sent += word + ' '
        
        str_idx = POS_policy(cur_sent)
        
        if str_idx != 0 and str_idx != prev_idx:
            prev_idx = str_idx
            
            sent, image = transgen.run(
                [cur_sent], 
                base_strength, 
                base_guidance_scale, 
                image if 'image' in locals() else None
            )
            
            generated_images.append({
                'sentence': cur_sent,
                'image': image
            })
    
    return generated_images

def main():
    st.title("Audio to Image Generation App")
    
    # File uploader
    uploaded_file = st.file_uploader("Choose a WAV audio file", type="wav")
    
    # Strength and Guidance Scale sliders
    base_strength = st.slider("Image Generation Strength", min_value=0.0, max_value=1.0, value=0.8, step=0.1)
    base_guidance_scale = st.slider("Guidance Scale", min_value=1.0, max_value=20.0, value=12.0, step=0.5)
    
    if uploaded_file is not None:
        # Save the uploaded file temporarily
        with open("temp_audio.wav", "wb") as f:
            f.write(uploaded_file.getvalue())
        
        # Generate images
        st.write("Generating Images...")
        generated_images = generate_images_from_audio("temp_audio.wav", base_strength, base_guidance_scale)
        
        # Display generated images
        st.write("Generated Images:")
        for img_data in generated_images:
            st.image(img_data['image'], caption=img_data['sentence'])

if __name__ == "__main__":
    main()