File size: 2,581 Bytes
1252e4e
 
 
 
 
 
 
 
 
 
 
 
c3e8af7
1252e4e
 
c3e8af7
 
 
 
1252e4e
c3e8af7
 
 
 
1252e4e
 
 
c3e8af7
1252e4e
 
c3e8af7
1252e4e
 
 
 
 
 
 
c3e8af7
1252e4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import streamlit as st
from pydub import AudioSegment
import os
import soundfile as sf
import uuid

# Set device and dtype
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32


@st.cache_resource
def load_model():
    # Use a specific Hindi-optimized Whisper model
    model_id = "openai/whisper-large-v2"  # or consider a multilingual model
    
    # For Hindi, you might want to specify additional parameters
    model = AutoModelForSpeechSeq2Seq.from_pretrained(
        model_id, 
        torch_dtype=torch_dtype, 
        low_cpu_mem_usage=True, 
        use_safetensors=True,
    )
    model.to(device)

    # Use the processor from the same model
    processor = AutoProcessor.from_pretrained(model_id)

    # Create pipeline with language specification
    pipe = pipeline(
        "automatic-speech-recognition",
        model=model,
        tokenizer=processor.tokenizer,
        feature_extractor=processor.feature_extractor,
        torch_dtype=torch_dtype,
        device=device,
        generate_kwargs={"language": "hi"}  # Specify Hindi language
    )
    return pipe, processor

# Load model and processor
pipe, processor = load_model()

# Streamlit UI
st.title("Hindi Audio to Text Transcription")

uploaded_file = st.file_uploader(
    "Upload a .wav audio file for transcription", type=["wav"]
)

if uploaded_file is not None:
    st.info("Processing uploaded file...")

    temp_filename = f"temp_audio_{uuid.uuid4()}.wav"
    with open(temp_filename, "wb") as f:
        f.write(uploaded_file.read())

    # Preprocess the audio
    sound = AudioSegment.from_file(temp_filename)
    sound = sound.set_channels(1)  # Convert to mono
    sound.export(temp_filename, format="wav")  # Save the processed file

    audio, _ = sf.read(temp_filename)  # Read audio data

    # Preprocess the audio for the model
    inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
    inputs = {k: v.to(device) for k, v in inputs.items()}

    # Perform transcription
    with torch.no_grad():
        outputs = pipe.model.generate(**inputs)
        transcription = processor.batch_decode(outputs, skip_special_tokens=True)[0]

    # Display the transcription
    st.success("Transcription complete!")
    st.markdown(f"### Transcription:\n\n{transcription}")

    os.remove(temp_filename)  # Clean up temporary file
else:
    st.warning("Please upload a .wav file to start transcription.")