Spaces:
Sleeping
Sleeping
File size: 7,518 Bytes
ba70d3f 1252e4e b10f48a ba70d3f b10f48a ba70d3f b10f48a ba70d3f b10f48a ba70d3f 8476397 b10f48a ba70d3f b10f48a 1252e4e b10f48a 1252e4e b10f48a 1252e4e b10f48a 1252e4e b10f48a ba70d3f b10f48a ba70d3f b10f48a ba70d3f b10f48a ba70d3f b10f48a 1252e4e b10f48a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import os
import subprocess
import sys
# Clone required repositories
def clone_repositories():
repos = [
('https://github.com/AI4Bharat/IndicTrans2.git', 'indictrans2'),
('https://github.com/VarunGumma/IndicTransToolkit.git', 'indictranstoolkit')
]
for repo_url, repo_dir in repos:
if not os.path.exists(repo_dir):
subprocess.check_call(['git', 'clone', repo_url, repo_dir])
sys.path.append(os.path.abspath(repo_dir))
# Clone repositories before importing
clone_repositories()
import streamlit as st
import torch
import librosa
import matplotlib.pyplot as plt
from PIL import Image
import torchaudio
from transformers import (
AutoModelForSpeechSeq2Seq,
AutoProcessor,
pipeline,
AutoModelForSeq2SeqLM,
AutoTokenizer,
BitsAndBytesConfig
)
from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler, StableDiffusionImg2ImgPipeline
import stanza
import numpy as np
from IndicTransToolkit import IndicProcessor
class TransGen:
def __init__(
self,
translation_model="ai4bharat/indictrans2-indic-en-1B",
stable_diff_model="stabilityai/stable-diffusion-2-base",
src_lang='hin_Deva',
tgt_lang='eng_Latn'
):
self.bnb_config = BitsAndBytesConfig(load_in_4bit=True)
self.tokenizer = AutoTokenizer.from_pretrained(translation_model, trust_remote_code=True)
self.model = AutoModelForSeq2SeqLM.from_pretrained(translation_model, trust_remote_code=True, quantization_config=self.bnb_config)
self.ip = IndicProcessor(inference=True)
self.src_lang = src_lang
self.tgt_lang = tgt_lang
scheduler = EulerDiscreteScheduler.from_pretrained(stable_diff_model, subfolder="scheduler")
self.pipe = StableDiffusionPipeline.from_pretrained(stable_diff_model, scheduler=scheduler, torch_dtype=torch.bfloat16)
self.pipe = self.pipe.to("cuda")
self.img2img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained(stable_diff_model, torch_dtype=torch.float16)
self.img2img_pipe = self.img2img_pipe.to('cuda')
def translate(self, input_sentences):
batch = self.ip.preprocess_batch(
input_sentences,
src_lang=self.src_lang,
tgt_lang=self.tgt_lang,
)
inputs = self.tokenizer(
batch,
truncation=True,
padding="longest",
return_tensors="pt",
return_attention_mask=True,
)
with torch.no_grad():
generated_tokens = self.model.generate(
**inputs,
use_cache=True,
min_length=0,
max_length=256,
num_beams=5,
num_return_sequences=1,
)
with self.tokenizer.as_target_tokenizer():
generated_tokens = self.tokenizer.batch_decode(
generated_tokens.detach().cpu().tolist(),
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
translations = self.ip.postprocess_batch(generated_tokens, lang=self.tgt_lang)
return translations
def generate_image(self, prompt, prev_image, strength=1.0, guidance_scale=7.5):
strength = float(strength) if strength is not None else 1.0
guidance_scale = float(guidance_scale) if guidance_scale is not None else 7.5
strength = max(0.0, min(1.0, strength))
if prev_image is not None:
image = self.img2img_pipe(
prompt,
image=prev_image,
strength=strength,
guidance_scale=guidance_scale,
negative_prompt='generate text in image'
).images[0]
return image
image = self.pipe(prompt)
return image.images[0]
def run(self, input_sentences, strength, guidance_scale, prev_image=None):
translations = self.translate(input_sentences)
sentence = translations[0]
image = self.generate_image(sentence, prev_image, strength, guidance_scale)
return sentence, image
def transcribe_audio_to_hindi(audio_path: str) -> str:
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
whisper_pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
model_kwargs={"language": "hi"}
)
waveform, sample_rate = torchaudio.load(audio_path)
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
waveform = resampler(waveform)
result = whisper_pipe(waveform.squeeze(0).cpu().numpy(), return_timestamps=True)
return result["text"]
# Download Stanza resources
stanza.download('hi')
nlp = stanza.Pipeline(lang='hi', processors='tokenize,pos')
def POS_policy(input_text):
doc = nlp(input_text)
words = doc.sentences[-1].words
n = len(words)
i = n-1
while i >= 0:
if words[i].upos in ['NOUN', 'VERB']:
return i
i -= 1
return 0
def generate_images_from_audio(audio_path, base_strength=0.8, base_guidance_scale=12):
text_tot = transcribe_audio_to_hindi(audio_path)
st.write(f'Transcripted sentence: {text_tot}')
cur_sent = ''
prev_idx = 0
generated_images = []
transgen = TransGen()
for word in text_tot.split():
cur_sent += word + ' '
str_idx = POS_policy(cur_sent)
if str_idx != 0 and str_idx != prev_idx:
prev_idx = str_idx
sent, image = transgen.run(
[cur_sent],
base_strength,
base_guidance_scale,
image if 'image' in locals() else None
)
generated_images.append({
'sentence': cur_sent,
'image': image
})
return generated_images
def main():
st.title("Audio to Image Generation App")
# File uploader
uploaded_file = st.file_uploader("Choose a WAV audio file", type="wav")
# Strength and Guidance Scale sliders
base_strength = st.slider("Image Generation Strength", min_value=0.0, max_value=1.0, value=0.8, step=0.1)
base_guidance_scale = st.slider("Guidance Scale", min_value=1.0, max_value=20.0, value=12.0, step=0.5)
if uploaded_file is not None:
# Save the uploaded file temporarily
with open("temp_audio.wav", "wb") as f:
f.write(uploaded_file.getvalue())
# Generate images
st.write("Generating Images...")
generated_images = generate_images_from_audio("temp_audio.wav", base_strength, base_guidance_scale)
# Display generated images
st.write("Generated Images:")
for img_data in generated_images:
st.image(img_data['image'], caption=img_data['sentence'])
if __name__ == "__main__":
main() |