openfree commited on
Commit
3544bdd
Β·
verified Β·
1 Parent(s): 0463e16

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +164 -57
app.py CHANGED
@@ -5,6 +5,9 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
  import torch.nn.functional as F
6
  import torch.nn as nn
7
  import re
 
 
 
8
  model_path = r'ssocean/NAIP'
9
  device = 'cuda:0'
10
 
@@ -12,6 +15,34 @@ global model, tokenizer
12
  model = None
13
  tokenizer = None
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  @spaces.GPU(duration=60, enable_queue=True)
16
  def predict(title, abstract):
17
  title = title.replace("\n", " ").strip().replace(''',"'")
@@ -48,17 +79,20 @@ example_papers = [
48
  {
49
  "title": "Attention Is All You Need",
50
  "abstract": "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train.",
51
- "note": "Revolutionary paper that introduced the Transformer architecture, fundamentally changing NLP and deep learning."
 
52
  },
53
  {
54
  "title": "Language Models are Few-Shot Learners",
55
  "abstract": "Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches.",
56
- "note": "Groundbreaking GPT-3 paper that demonstrated the power of large language models."
 
57
  },
58
  {
59
  "title": "An Empirical Study of Neural Network Training Protocols",
60
  "abstract": "This paper presents a comparative analysis of different training protocols for neural networks across various architectures. We examine the effects of learning rate schedules, batch size selection, and optimization algorithms on model convergence and final performance. Our experiments span multiple datasets and model sizes, providing practical insights for deep learning practitioners.",
61
- "note": "Solid research paper with useful findings but more limited scope and impact."
 
62
  }
63
  ]
64
 
@@ -89,14 +123,82 @@ def update_button_status(title, abstract):
89
  return gr.update(value="Error: " + message), gr.update(interactive=False)
90
  return gr.update(value=message), gr.update(interactive=True)
91
 
92
- with gr.Blocks(theme=gr.themes.Default()) as iface:
93
- gr.Markdown("""
94
- # PaperImpact: AI-Powered Research Impact Predictor
95
- ### Estimate the future academic impact from the title and abstract with advanced AI analysis
96
- """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
  with gr.Row():
99
- with gr.Column():
 
 
 
 
 
 
 
 
 
 
100
  title_input = gr.Textbox(
101
  lines=2,
102
  placeholder="Enter Paper Title (minimum 3 words)...",
@@ -107,57 +209,56 @@ with gr.Blocks(theme=gr.themes.Default()) as iface:
107
  placeholder="Enter Paper Abstract (minimum 50 words)...",
108
  label="Paper Abstract"
109
  )
110
- validation_status = gr.Textbox(label="Validation Status", interactive=False)
111
- submit_button = gr.Button("Predict Impact", interactive=False)
112
 
113
- with gr.Column():
114
- score_output = gr.Number(label="Impact Score")
115
- grade_output = gr.Textbox(label="Grade", value="")
116
-
117
- # Scientific Methodology Section
118
- gr.Markdown("""
119
- ### πŸ”¬ Scientific Methodology
120
- - Training Data: Model trained on extensive dataset of published papers from CS.CV, CS.CL(NLP), and CS.AI fields with verified citation impacts
121
- - Optimization Method: Uses NDCG (Normalized Discounted Cumulative Gain) optimization with Sigmoid activation and MSE loss function
122
- - Validation Process: Cross-validated against historical paper impact data to ensure prediction accuracy
123
- - Model Architecture: Utilizes advanced transformer-based architecture for deep textual analysis
124
- - Objective Metrics: Predictions based on quantitative analysis of citation patterns and research influence
125
- """)
126
-
127
- # Rating Scale Section
128
- gr.Markdown("""
129
- ### πŸ“Š Rating Scale
130
- - AAA (0.900-1.000) 🌟 - Exceptional Impact
131
- - AA (0.800-0.899) ⭐ - Very High Impact
132
- - A (0.650-0.799) ✨ - High Impact
133
- - BBB (0.600-0.649) πŸ”΅ - Above Average Impact
134
- - BB (0.550-0.599) πŸ“˜ - Moderate Impact
135
- - B (0.500-0.549) πŸ“– - Average Impact
136
- - CCC (0.400-0.499) πŸ“ - Below Average Impact
137
- - CC (0.300-0.399) ✏️ - Low Impact
138
- - C (below 0.299) πŸ“‘ - Limited Impact
139
- """)
 
 
 
 
 
 
140
 
141
  # Example Papers Section
142
- gr.Markdown("""
143
- ### πŸ“‹ Example Papers
144
- """)
145
- for paper in example_papers:
146
- gr.Markdown(f"""
147
- #### {paper['title']} - {paper['grade']} ({paper['score']})
148
- {paper['abstract']}
149
- *Note: {paper['note']}*
150
- ---
151
- """)
152
-
153
- # Important Notes Section
154
- gr.Markdown("""
155
- ### πŸ“Œ Important Notes
156
- - This tool is designed for research in Computer Vision (CV), Natural Language Processing (NLP), and AI fields only
157
- - Predictions are based on title and abstract analysis using advanced AI models
158
- - Scores reflect potential academic impact, not paper quality or novelty
159
- - For research and educational purposes only
160
- """)
161
 
162
  # Event handlers
163
  title_input.change(
@@ -170,6 +271,12 @@ with gr.Blocks(theme=gr.themes.Default()) as iface:
170
  inputs=[title_input, abstract_input],
171
  outputs=[validation_status, submit_button]
172
  )
 
 
 
 
 
 
173
 
174
  def process_prediction(title, abstract):
175
  score = predict(title, abstract)
 
5
  import torch.nn.functional as F
6
  import torch.nn as nn
7
  import re
8
+ import requests
9
+ import arxiv
10
+
11
  model_path = r'ssocean/NAIP'
12
  device = 'cuda:0'
13
 
 
15
  model = None
16
  tokenizer = None
17
 
18
+ def fetch_arxiv_paper(arxiv_input):
19
+ """Fetch paper details from arXiv URL or ID."""
20
+ try:
21
+ # Extract arXiv ID from URL or use directly
22
+ arxiv_id = arxiv_input.split('/')[-1]
23
+ if 'abs' in arxiv_id:
24
+ arxiv_id = arxiv_id.split('abs/')[-1]
25
+ if '.pdf' in arxiv_id:
26
+ arxiv_id = arxiv_id.replace('.pdf', '')
27
+
28
+ # Search for the paper
29
+ search = arxiv.Search(id_list=[arxiv_id])
30
+ paper = next(search.results())
31
+
32
+ return {
33
+ "title": paper.title,
34
+ "abstract": paper.summary,
35
+ "success": True,
36
+ "message": "Paper fetched successfully!"
37
+ }
38
+ except Exception as e:
39
+ return {
40
+ "title": "",
41
+ "abstract": "",
42
+ "success": False,
43
+ "message": f"Error fetching paper: {str(e)}"
44
+ }
45
+
46
  @spaces.GPU(duration=60, enable_queue=True)
47
  def predict(title, abstract):
48
  title = title.replace("\n", " ").strip().replace(''',"'")
 
79
  {
80
  "title": "Attention Is All You Need",
81
  "abstract": "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train.",
82
+ "score": 0.982,
83
+ "note": "πŸ’« Revolutionary paper that introduced the Transformer architecture, fundamentally changing NLP and deep learning."
84
  },
85
  {
86
  "title": "Language Models are Few-Shot Learners",
87
  "abstract": "Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches.",
88
+ "score": 0.956,
89
+ "note": "πŸš€ Groundbreaking GPT-3 paper that demonstrated the power of large language models."
90
  },
91
  {
92
  "title": "An Empirical Study of Neural Network Training Protocols",
93
  "abstract": "This paper presents a comparative analysis of different training protocols for neural networks across various architectures. We examine the effects of learning rate schedules, batch size selection, and optimization algorithms on model convergence and final performance. Our experiments span multiple datasets and model sizes, providing practical insights for deep learning practitioners.",
94
+ "score": 0.623,
95
+ "note": "πŸ“š Solid research paper with useful findings but more limited scope and impact."
96
  }
97
  ]
98
 
 
123
  return gr.update(value="Error: " + message), gr.update(interactive=False)
124
  return gr.update(value=message), gr.update(interactive=True)
125
 
126
+ def process_arxiv_input(arxiv_input):
127
+ """Process arXiv input and update title/abstract fields."""
128
+ if not arxiv_input.strip():
129
+ return "", "", "Please enter an arXiv URL or ID"
130
+
131
+ result = fetch_arxiv_paper(arxiv_input)
132
+ if result["success"]:
133
+ return result["title"], result["abstract"], result["message"]
134
+ else:
135
+ return "", "", result["message"]
136
+
137
+ css = """
138
+ .gradio-container {
139
+ font-family: 'Arial', sans-serif;
140
+ }
141
+ .main-title {
142
+ text-align: center;
143
+ color: #2563eb;
144
+ font-size: 2.5rem !important;
145
+ margin-bottom: 1rem !important;
146
+ background: linear-gradient(45deg, #2563eb, #1d4ed8);
147
+ -webkit-background-clip: text;
148
+ -webkit-text-fill-color: transparent;
149
+ }
150
+ .sub-title {
151
+ text-align: center;
152
+ color: #4b5563;
153
+ font-size: 1.5rem !important;
154
+ margin-bottom: 2rem !important;
155
+ }
156
+ .input-section {
157
+ background: white;
158
+ padding: 2rem;
159
+ border-radius: 1rem;
160
+ box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1);
161
+ }
162
+ .result-section {
163
+ background: #f8fafc;
164
+ padding: 2rem;
165
+ border-radius: 1rem;
166
+ margin-top: 2rem;
167
+ }
168
+ .methodology-section {
169
+ background: #ecfdf5;
170
+ padding: 2rem;
171
+ border-radius: 1rem;
172
+ margin-top: 2rem;
173
+ }
174
+ .example-section {
175
+ background: #fff7ed;
176
+ padding: 2rem;
177
+ border-radius: 1rem;
178
+ margin-top: 2rem;
179
+ }
180
+ """
181
+
182
+ with gr.Blocks(theme=gr.themes.Default(), css=css) as iface:
183
+ gr.Markdown(
184
+ """
185
+ # PaperImpact: AI-Powered Research Impact Predictor {.main-title}
186
+ ### Estimate the future academic impact from the title and abstract with advanced AI analysis {.sub-title}
187
+ """
188
+ )
189
 
190
  with gr.Row():
191
+ with gr.Column(elem_classes="input-section"):
192
+ # arXiv Input
193
+ arxiv_input = gr.Textbox(
194
+ lines=1,
195
+ placeholder="Enter arXiv URL or ID (e.g., 2006.16236 or https://arxiv.org/abs/2006.16236)",
196
+ label="πŸ“‘ arXiv Paper URL/ID"
197
+ )
198
+ fetch_button = gr.Button("πŸ” Fetch Paper Details", variant="secondary")
199
+
200
+ gr.Markdown("### πŸ“ Or Enter Paper Details Manually")
201
+
202
  title_input = gr.Textbox(
203
  lines=2,
204
  placeholder="Enter Paper Title (minimum 3 words)...",
 
209
  placeholder="Enter Paper Abstract (minimum 50 words)...",
210
  label="Paper Abstract"
211
  )
212
+ validation_status = gr.Textbox(label="βœ”οΈ Validation Status", interactive=False)
213
+ submit_button = gr.Button("🎯 Predict Impact", interactive=False, variant="primary")
214
 
215
+ with gr.Column(elem_classes="result-section"):
216
+ score_output = gr.Number(label="🎯 Impact Score")
217
+ grade_output = gr.Textbox(label="πŸ† Grade", value="")
218
+
219
+ with gr.Row(elem_classes="methodology-section"):
220
+ gr.Markdown(
221
+ """
222
+ ### πŸ”¬ Scientific Methodology
223
+ - **Training Data**: Model trained on extensive dataset of published papers from CS.CV, CS.CL(NLP), and CS.AI fields
224
+ - **Optimization**: NDCG optimization with Sigmoid activation and MSE loss function
225
+ - **Validation**: Cross-validated against historical paper impact data
226
+ - **Architecture**: Advanced transformer-based deep textual analysis
227
+ - **Metrics**: Quantitative analysis of citation patterns and research influence
228
+ """
229
+ )
230
+
231
+ with gr.Row():
232
+ gr.Markdown(
233
+ """
234
+ ### πŸ“Š Rating Scale
235
+ | Grade | Score Range | Description | Indicator |
236
+ |-------|-------------|-------------|-----------|
237
+ | AAA | 0.900-1.000 | Exceptional Impact | 🌟 |
238
+ | AA | 0.800-0.899 | Very High Impact | ⭐ |
239
+ | A | 0.650-0.799 | High Impact | ✨ |
240
+ | BBB | 0.600-0.649 | Above Average Impact | πŸ”΅ |
241
+ | BB | 0.550-0.599 | Moderate Impact | πŸ“˜ |
242
+ | B | 0.500-0.549 | Average Impact | πŸ“– |
243
+ | CCC | 0.400-0.499 | Below Average Impact | πŸ“ |
244
+ | CC | 0.300-0.399 | Low Impact | ✏️ |
245
+ | C | < 0.299 | Limited Impact | πŸ“‘ |
246
+ """
247
+ )
248
 
249
  # Example Papers Section
250
+ with gr.Row(elem_classes="example-section"):
251
+ gr.Markdown("### πŸ“‹ Example Papers")
252
+ for paper in example_papers:
253
+ gr.Markdown(
254
+ f"""
255
+ #### {paper['title']}
256
+ **Score**: {paper.get('score', 'N/A')} | **Grade**: {get_grade_and_emoji(paper.get('score', 0))}
257
+ {paper['abstract']}
258
+ *{paper['note']}*
259
+ ---
260
+ """
261
+ )
 
 
 
 
 
 
 
262
 
263
  # Event handlers
264
  title_input.change(
 
271
  inputs=[title_input, abstract_input],
272
  outputs=[validation_status, submit_button]
273
  )
274
+
275
+ fetch_button.click(
276
+ process_arxiv_input,
277
+ inputs=[arxiv_input],
278
+ outputs=[title_input, abstract_input, validation_status]
279
+ )
280
 
281
  def process_prediction(title, abstract):
282
  score = predict(title, abstract)