Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,223 +1,244 @@
|
|
1 |
-
import
|
2 |
-
import gradio as gr
|
3 |
-
import os
|
4 |
-
import numpy as np
|
5 |
-
from pydub import AudioSegment
|
6 |
-
import hashlib
|
7 |
-
import io
|
8 |
-
from sonic import Sonic
|
9 |
from PIL import Image
|
10 |
-
import
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
18 |
)
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
)
|
65 |
-
|
66 |
-
|
67 |
-
# 얼굴이 전혀 없으면 -1 리턴
|
68 |
-
return -1
|
69 |
-
|
70 |
-
def process_sonic(image, audio, dynamic_scale):
|
71 |
-
"""
|
72 |
-
Gradio 인터페이스에서 호출되는 함수:
|
73 |
-
1. 이미지/오디오 검사
|
74 |
-
2. MD5 해시 -> 파일명
|
75 |
-
3. 캐시 검사 -> 없으면 영상 생성
|
76 |
-
"""
|
77 |
-
if image is None:
|
78 |
-
raise gr.Error("Please upload an image")
|
79 |
-
if audio is None:
|
80 |
-
raise gr.Error("Please upload an audio file")
|
81 |
-
|
82 |
-
# (1) 이미지 MD5
|
83 |
-
buf_img = io.BytesIO()
|
84 |
-
image.save(buf_img, format="PNG")
|
85 |
-
img_bytes = buf_img.getvalue()
|
86 |
-
img_md5 = get_md5(img_bytes)
|
87 |
-
|
88 |
-
# (2) 오디오 MD5
|
89 |
-
sampling_rate, arr = audio[:2]
|
90 |
-
if len(arr.shape) == 1:
|
91 |
-
arr = arr[:, None]
|
92 |
-
audio_segment = AudioSegment(
|
93 |
-
arr.tobytes(),
|
94 |
-
frame_rate=sampling_rate,
|
95 |
-
sample_width=arr.dtype.itemsize,
|
96 |
-
channels=arr.shape[1]
|
97 |
-
)
|
98 |
-
# Whisper 호환을 위해 mono/16kHz로 변환
|
99 |
-
audio_segment = audio_segment.set_channels(1).set_frame_rate(16000)
|
100 |
-
|
101 |
-
MAX_DURATION_MS = 60000
|
102 |
-
if len(audio_segment) > MAX_DURATION_MS:
|
103 |
-
audio_segment = audio_segment[:MAX_DURATION_MS]
|
104 |
-
|
105 |
-
buf_audio = io.BytesIO()
|
106 |
-
audio_segment.export(buf_audio, format="wav")
|
107 |
-
audio_bytes = buf_audio.getvalue()
|
108 |
-
audio_md5 = get_md5(audio_bytes)
|
109 |
-
|
110 |
-
# (3) 파일 경로
|
111 |
-
image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
|
112 |
-
audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
|
113 |
-
res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
|
114 |
-
|
115 |
-
if not os.path.exists(image_path):
|
116 |
-
with open(image_path, "wb") as f:
|
117 |
-
f.write(img_bytes)
|
118 |
-
if not os.path.exists(audio_path):
|
119 |
-
with open(audio_path, "wb") as f:
|
120 |
-
f.write(audio_bytes)
|
121 |
-
|
122 |
-
# (4) 캐싱된 결과가 있으면 재사용
|
123 |
-
if os.path.exists(res_video_path):
|
124 |
-
print(f"[INFO] Using cached result: {res_video_path}")
|
125 |
-
return res_video_path
|
126 |
-
else:
|
127 |
-
print(f"[INFO] Generating new video with dynamic_scale={dynamic_scale}")
|
128 |
-
video_result = get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
|
129 |
-
return video_result
|
130 |
-
|
131 |
-
def get_example():
|
132 |
-
return []
|
133 |
-
|
134 |
-
css = """
|
135 |
-
.gradio-container {
|
136 |
-
font-family: 'Arial', sans-serif;
|
137 |
-
}
|
138 |
-
.main-header {
|
139 |
-
text-align: center;
|
140 |
-
color: #2a2a2a;
|
141 |
-
margin-bottom: 2em;
|
142 |
-
}
|
143 |
-
.parameter-section {
|
144 |
-
background-color: #f5f5f5;
|
145 |
-
padding: 1em;
|
146 |
-
border-radius: 8px;
|
147 |
-
margin: 1em 0;
|
148 |
-
}
|
149 |
-
.example-section {
|
150 |
-
margin-top: 2em;
|
151 |
-
}
|
152 |
-
"""
|
153 |
-
|
154 |
-
with gr.Blocks(css=css) as demo:
|
155 |
-
gr.HTML("""
|
156 |
-
<div class="main-header">
|
157 |
-
<h1>🎭 Sonic: Advanced Portrait Animation</h1>
|
158 |
-
<p>Transform still images into dynamic videos synchronized with audio (up to 1 minute)</p>
|
159 |
-
</div>
|
160 |
-
""")
|
161 |
-
|
162 |
-
with gr.Row():
|
163 |
-
with gr.Column():
|
164 |
-
image_input = gr.Image(
|
165 |
-
type='pil',
|
166 |
-
label="Portrait Image",
|
167 |
-
elem_id="image_input"
|
168 |
-
)
|
169 |
-
audio_input = gr.Audio(
|
170 |
-
label="Voice/Audio Input (up to 1 minute)",
|
171 |
-
elem_id="audio_input",
|
172 |
-
type="numpy"
|
173 |
-
)
|
174 |
-
with gr.Column():
|
175 |
-
dynamic_scale = gr.Slider(
|
176 |
-
minimum=0.5,
|
177 |
-
maximum=2.0,
|
178 |
-
value=1.0,
|
179 |
-
step=0.1,
|
180 |
-
label="Animation Intensity",
|
181 |
-
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
|
182 |
-
)
|
183 |
-
process_btn = gr.Button(
|
184 |
-
"Generate Animation",
|
185 |
-
variant="primary",
|
186 |
-
elem_id="process_btn"
|
187 |
-
)
|
188 |
-
|
189 |
-
with gr.Column():
|
190 |
-
video_output = gr.Video(
|
191 |
-
label="Generated Animation",
|
192 |
-
elem_id="video_output"
|
193 |
-
)
|
194 |
-
|
195 |
-
process_btn.click(
|
196 |
-
fn=process_sonic,
|
197 |
-
inputs=[image_input, audio_input, dynamic_scale],
|
198 |
-
outputs=video_output,
|
199 |
-
)
|
200 |
-
|
201 |
-
gr.Examples(
|
202 |
-
examples=get_example(),
|
203 |
-
fn=process_sonic,
|
204 |
-
inputs=[image_input, audio_input, dynamic_scale],
|
205 |
-
outputs=video_output,
|
206 |
-
cache_examples=False
|
207 |
-
)
|
208 |
-
|
209 |
-
gr.HTML("""
|
210 |
-
<div style="text-align: center; margin-top: 2em;">
|
211 |
-
<div style="margin-bottom: 1em;">
|
212 |
-
<a href="https://github.com/jixiaozhong/Sonic" target="_blank" style="text-decoration: none;">
|
213 |
-
<img src="https://img.shields.io/badge/GitHub-Repo-blue?style=for-the-badge&logo=github" alt="GitHub Repo">
|
214 |
-
</a>
|
215 |
-
<a href="https://arxiv.org/pdf/2411.16331" target="_blank" style="text-decoration: none;">
|
216 |
-
<img src="https://img.shields.io/badge/Paper-arXiv-red?style=for-the-badge&logo=arxiv" alt="arXiv Paper">
|
217 |
-
</a>
|
218 |
-
</div>
|
219 |
-
<p>🔔 Note: For optimal results, use clear portrait images and high-quality audio (now supports up to 1 minute!)</p>
|
220 |
-
</div>
|
221 |
-
""")
|
222 |
-
|
223 |
-
demo.launch(share=True)
|
|
|
1 |
+
import os, math, torch, cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
+
from omegaconf import OmegaConf
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
from diffusers import AutoencoderKLTemporalDecoder
|
7 |
+
from diffusers.schedulers import EulerDiscreteScheduler
|
8 |
+
from transformers import WhisperModel, CLIPVisionModelWithProjection, AutoFeatureExtractor
|
9 |
+
|
10 |
+
from src.utils.util import save_videos_grid, seed_everything
|
11 |
+
from src.dataset.test_preprocess import process_bbox, image_audio_to_tensor
|
12 |
+
from src.models.base.unet_spatio_temporal_condition import (
|
13 |
+
UNetSpatioTemporalConditionModel, add_ip_adapters,
|
14 |
)
|
15 |
+
from src.pipelines.pipeline_sonic import SonicPipeline
|
16 |
+
from src.models.audio_adapter.audio_proj import AudioProjModel
|
17 |
+
from src.models.audio_adapter.audio_to_bucket import Audio2bucketModel
|
18 |
+
from src.utils.RIFE.RIFE_HDv3 import RIFEModel
|
19 |
+
from src.dataset.face_align.align import AlignImage
|
20 |
+
|
21 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
22 |
+
|
23 |
+
|
24 |
+
# ------------------------------------------------------------------
|
25 |
+
# single image + speech → video-tensor generator
|
26 |
+
# ------------------------------------------------------------------
|
27 |
+
def test(
|
28 |
+
pipe, config, wav_enc, audio_pe, audio2bucket, image_encoder,
|
29 |
+
width, height, batch,
|
30 |
+
):
|
31 |
+
# ---- 배치 차원 맞추기 -----------------------------------------
|
32 |
+
for k, v in batch.items():
|
33 |
+
if isinstance(v, torch.Tensor):
|
34 |
+
batch[k] = v.unsqueeze(0).to(pipe.device).float()
|
35 |
+
|
36 |
+
ref_img = batch["ref_img"]
|
37 |
+
clip_img = batch["clip_images"]
|
38 |
+
face_mask = batch["face_mask"]
|
39 |
+
image_embeds = image_encoder(clip_img).image_embeds # (1,1024)
|
40 |
+
|
41 |
+
audio_feature = batch["audio_feature"] # (1, 80, T)
|
42 |
+
audio_len = int(batch["audio_len"])
|
43 |
+
step = int(config.step)
|
44 |
+
|
45 |
+
window = 16_000 # 1-sec chunks
|
46 |
+
audio_prompts, last_prompts = [], []
|
47 |
+
|
48 |
+
for i in range(0, audio_feature.shape[-1], window):
|
49 |
+
chunk = audio_feature[:, :, i : i + window] # (1, 80, win)
|
50 |
+
layers = wav_enc.encoder(chunk, output_hidden_states=True).hidden_states
|
51 |
+
last = wav_enc.encoder(chunk).last_hidden_state.unsqueeze(-2)
|
52 |
+
audio_prompts.append(torch.stack(layers, dim=2)) # (1, w, L, 384)
|
53 |
+
last_prompts.append(last)
|
54 |
+
|
55 |
+
if not audio_prompts:
|
56 |
+
raise ValueError("[ERROR] No speech recognised in the provided audio.")
|
57 |
+
|
58 |
+
audio_prompts = torch.cat(audio_prompts, dim=1)
|
59 |
+
last_prompts = torch.cat(last_prompts, dim=1)
|
60 |
+
|
61 |
+
# padding 규칙
|
62 |
+
audio_prompts = torch.cat(
|
63 |
+
[torch.zeros_like(audio_prompts[:, :4]), audio_prompts,
|
64 |
+
torch.zeros_like(audio_prompts[:, :6])], dim=1)
|
65 |
+
last_prompts = torch.cat(
|
66 |
+
[torch.zeros_like(last_prompts[:, :24]), last_prompts,
|
67 |
+
torch.zeros_like(last_prompts[:, :26])], dim=1)
|
68 |
+
|
69 |
+
total_tokens = audio_prompts.shape[1]
|
70 |
+
num_chunks = max(1, math.ceil(total_tokens / (2 * step)))
|
71 |
+
|
72 |
+
ref_list, audio_list, uncond_list, motion_buckets = [], [], [], []
|
73 |
+
|
74 |
+
for i in tqdm(range(num_chunks)):
|
75 |
+
start = i * 2 * step
|
76 |
+
|
77 |
+
# ------------ cond_clip : (1,1,10,5,384) ------------------
|
78 |
+
clip_raw = audio_prompts[:, start : start + 10] # (1, ≤10, L, 384)
|
79 |
+
|
80 |
+
# ★ W-padding은 dim=1 이어야 함!
|
81 |
+
if clip_raw.shape[1] < 10:
|
82 |
+
pad_w = torch.zeros_like(clip_raw[:, : 10 - clip_raw.shape[1]])
|
83 |
+
clip_raw = torch.cat([clip_raw, pad_w], dim=1)
|
84 |
+
|
85 |
+
# ★ L-padding은 dim=2
|
86 |
+
while clip_raw.shape[2] < 5:
|
87 |
+
clip_raw = torch.cat([clip_raw, clip_raw[:, :, -1:]], dim=2)
|
88 |
+
clip_raw = clip_raw[:, :, :5] # (1,10,5,384)
|
89 |
+
|
90 |
+
cond_clip = clip_raw.unsqueeze(1) # (1,1,10,5,384)
|
91 |
+
|
92 |
+
# ------------ bucket_clip : (1,1,50,1,384) -----------------
|
93 |
+
bucket_raw = last_prompts[:, start : start + 50]
|
94 |
+
if bucket_raw.shape[1] < 50: # ★ dim=1
|
95 |
+
pad_w = torch.zeros_like(bucket_raw[:, : 50 - bucket_raw.shape[1]])
|
96 |
+
bucket_raw = torch.cat([bucket_raw, pad_w], dim=1)
|
97 |
+
bucket_clip = bucket_raw.unsqueeze(1) # (1,1,50,1,384)
|
98 |
+
|
99 |
+
motion = audio2bucket(bucket_clip, image_embeds) * 16 + 16
|
100 |
+
|
101 |
+
ref_list.append(ref_img[0])
|
102 |
+
audio_list.append(audio_pe(cond_clip).squeeze(0)) # (50,1024)
|
103 |
+
uncond_list.append(audio_pe(torch.zeros_like(cond_clip)).squeeze(0))
|
104 |
+
motion_buckets.append(motion[0])
|
105 |
+
|
106 |
+
# ---- Stable-Video-Diffusion 호출 ------------------------------
|
107 |
+
video = pipe(
|
108 |
+
ref_img, clip_img, face_mask,
|
109 |
+
audio_list, uncond_list, motion_buckets,
|
110 |
+
height=height, width=width,
|
111 |
+
num_frames=len(audio_list),
|
112 |
+
decode_chunk_size=config.decode_chunk_size,
|
113 |
+
motion_bucket_scale=config.motion_bucket_scale,
|
114 |
+
fps=config.fps,
|
115 |
+
noise_aug_strength=config.noise_aug_strength,
|
116 |
+
min_guidance_scale1=config.min_appearance_guidance_scale,
|
117 |
+
max_guidance_scale1=config.max_appearance_guidance_scale,
|
118 |
+
min_guidance_scale2=config.audio_guidance_scale,
|
119 |
+
max_guidance_scale2=config.audio_guidance_scale,
|
120 |
+
overlap=config.overlap,
|
121 |
+
shift_offset=config.shift_offset,
|
122 |
+
frames_per_batch=config.n_sample_frames,
|
123 |
+
num_inference_steps=config.num_inference_steps,
|
124 |
+
i2i_noise_strength=config.i2i_noise_strength,
|
125 |
+
).frames
|
126 |
+
|
127 |
+
video = (video * 0.5 + 0.5).clamp(0, 1)
|
128 |
+
return video.to(pipe.device).unsqueeze(0).cpu()
|
129 |
+
|
130 |
+
|
131 |
+
# ------------------------------------------------------------------
|
132 |
+
# Sonic 클래스
|
133 |
+
# ------------------------------------------------------------------
|
134 |
+
class Sonic:
|
135 |
+
config_file = os.path.join(BASE_DIR, "config/inference/sonic.yaml")
|
136 |
+
config = OmegaConf.load(config_file)
|
137 |
+
|
138 |
+
def __init__(self, device_id: int = 0, enable_interpolate_frame: bool = True):
|
139 |
+
cfg = self.config
|
140 |
+
cfg.use_interframe = enable_interpolate_frame
|
141 |
+
self.device = f"cuda:{device_id}" if device_id >= 0 and torch.cuda.is_available() else "cpu"
|
142 |
+
cfg.pretrained_model_name_or_path = os.path.join(BASE_DIR, cfg.pretrained_model_name_or_path)
|
143 |
+
|
144 |
+
self._load_models(cfg)
|
145 |
+
print("Sonic init done")
|
146 |
+
|
147 |
+
# --------------------------------------------------------------
|
148 |
+
def _load_models(self, cfg):
|
149 |
+
dtype = {"fp16": torch.float16, "fp32": torch.float32, "bf16": torch.bfloat16}[cfg.weight_dtype]
|
150 |
+
|
151 |
+
vae = AutoencoderKLTemporalDecoder.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", variant="fp16")
|
152 |
+
sched = EulerDiscreteScheduler.from_pretrained (cfg.pretrained_model_name_or_path, subfolder="scheduler")
|
153 |
+
img_e = CLIPVisionModelWithProjection.from_pretrained (cfg.pretrained_model_name_or_path, subfolder="image_encoder", variant="fp16")
|
154 |
+
unet = UNetSpatioTemporalConditionModel.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="unet", variant="fp16")
|
155 |
+
add_ip_adapters(unet, [32], [cfg.ip_audio_scale])
|
156 |
+
|
157 |
+
a2t = AudioProjModel(10, 5, 384, 1024, 1024, 32).to(self.device)
|
158 |
+
a2b = Audio2bucketModel(50, 1, 384, 1024, 1024, 1, 2).to(self.device)
|
159 |
+
|
160 |
+
unet.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.unet_checkpoint_path), map_location="cpu"))
|
161 |
+
a2t.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2token_checkpoint_path), map_location="cpu"))
|
162 |
+
a2b.load_state_dict(torch.load(os.path.join(BASE_DIR, cfg.audio2bucket_checkpoint_path), map_location="cpu"))
|
163 |
+
|
164 |
+
whisper = WhisperModel.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny")).to(self.device).eval()
|
165 |
+
whisper.requires_grad_(False)
|
166 |
+
|
167 |
+
self.feature_extractor = AutoFeatureExtractor.from_pretrained(os.path.join(BASE_DIR, "checkpoints/whisper-tiny"))
|
168 |
+
self.face_det = AlignImage(self.device, det_path=os.path.join(BASE_DIR, "checkpoints/yoloface_v5m.pt"))
|
169 |
+
if cfg.use_interframe:
|
170 |
+
self.rife = RIFEModel(device=self.device)
|
171 |
+
self.rife.load_model(os.path.join(BASE_DIR, "checkpoints/RIFE/"))
|
172 |
+
|
173 |
+
img_e.to(dtype); vae.to(dtype); unet.to(dtype)
|
174 |
+
|
175 |
+
self.pipe = SonicPipeline(unet=unet, image_encoder=img_e, vae=vae, scheduler=sched).to(device=self.device, dtype=dtype)
|
176 |
+
self.image_encoder = img_e
|
177 |
+
self.audio2token = a2t
|
178 |
+
self.audio2bucket = a2b
|
179 |
+
self.whisper = whisper
|
180 |
+
|
181 |
+
# --------------------------------------------------------------
|
182 |
+
def preprocess(self, img_path: str, expand_ratio: float = 1.0):
|
183 |
+
img = cv2.imread(img_path)
|
184 |
+
h, w = img.shape[:2]
|
185 |
+
_, _, faces = self.face_det(img, maxface=True)
|
186 |
+
if faces:
|
187 |
+
x1, y1, ww, hh = faces[0]
|
188 |
+
return {"face_num": 1, "crop_bbox": process_bbox((x1, y1, x1 + ww, y1 + hh), expand_ratio, h, w)}
|
189 |
+
return {"face_num": 0, "crop_bbox": None}
|
190 |
+
|
191 |
+
# --------------------------------------------------------------
|
192 |
+
@torch.no_grad()
|
193 |
+
def process(
|
194 |
+
self,
|
195 |
+
img_path: str,
|
196 |
+
audio_path:str,
|
197 |
+
out_path: str,
|
198 |
+
min_resolution: int = 512,
|
199 |
+
inference_steps:int = 25,
|
200 |
+
dynamic_scale: float = 1.0,
|
201 |
+
keep_resolution: bool = False,
|
202 |
+
seed: int | None = None,
|
203 |
+
):
|
204 |
+
cfg = self.config
|
205 |
+
if seed is not None: cfg.seed = seed
|
206 |
+
cfg.num_inference_steps = inference_steps
|
207 |
+
cfg.motion_bucket_scale = dynamic_scale
|
208 |
+
seed_everything(cfg.seed)
|
209 |
+
|
210 |
+
sample = image_audio_to_tensor(
|
211 |
+
self.face_det, self.feature_extractor,
|
212 |
+
img_path, audio_path,
|
213 |
+
limit=-1, image_size=min_resolution, area=cfg.area,
|
214 |
+
)
|
215 |
+
if sample is None:
|
216 |
+
return -1
|
217 |
+
|
218 |
+
h, w = sample["ref_img"].shape[-2:]
|
219 |
+
resolution = (f"{(Image.open(img_path).width //2)*2}x{(Image.open(img_path).height//2)*2}"
|
220 |
+
if keep_resolution else f"{w}x{h}")
|
221 |
+
|
222 |
+
video = test(
|
223 |
+
self.pipe, cfg, self.whisper, self.audio2token,
|
224 |
+
self.audio2bucket, self.image_encoder,
|
225 |
+
w, h, sample,
|
226 |
+
)
|
227 |
+
|
228 |
+
if cfg.use_interframe:
|
229 |
+
out = video.to(self.device)
|
230 |
+
frames = []
|
231 |
+
for i in tqdm(range(out.shape[2] - 1), ncols=0):
|
232 |
+
mid = self.rife.inference(out[:, :, i], out[:, :, i + 1]).clamp(0, 1).detach()
|
233 |
+
frames.extend([out[:, :, i], mid])
|
234 |
+
frames.append(out[:, :, -1])
|
235 |
+
video = torch.stack(frames, 2).cpu()
|
236 |
+
|
237 |
+
tmp = out_path.replace(".mp4", "_noaudio.mp4")
|
238 |
+
save_videos_grid(video, tmp, n_rows=video.shape[0], fps=cfg.fps * (2 if cfg.use_interframe else 1))
|
239 |
+
os.system(
|
240 |
+
f"ffmpeg -i '{tmp}' -i '{audio_path}' -s {resolution} "
|
241 |
+
f"-vcodec libx264 -acodec aac -crf 18 -shortest '{out_path}' -y -loglevel error"
|
242 |
)
|
243 |
+
os.remove(tmp)
|
244 |
+
return 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|