Spaces:
Running
on
Zero
Running
on
Zero
import os | |
# 1) Dynamo ์์ ๋นํ์ฑํ | |
os.environ["TORCH_DYNAMO_DISABLE"] = "1" | |
# 2) Triton์ cudagraphs ์ต์ ํ ๋นํ์ฑํ | |
os.environ["TRITON_DISABLE_CUDAGRAPHS"] = "1" | |
# (์ต์ ) ๊ฒฝ๊ณ ๋ฌด์ ์ค์ | |
import warnings | |
warnings.filterwarnings("ignore", message="skipping cudagraphs due to mutated inputs") | |
warnings.filterwarnings("ignore", message="Not enough SMs to use max_autotune_gemm mode") | |
import torch | |
# TensorFloat32 ์ฐ์ฐ ํ์ฑํ (์ฑ๋ฅ ์ต์ ํ) | |
torch.set_float32_matmul_precision('high') | |
import torch._inductor | |
torch._inductor.config.triton.cudagraphs = False | |
import torch._dynamo | |
# suppress_errors (์ค๋ฅ ์ eager๋ก fallback) | |
torch._dynamo.config.suppress_errors = True | |
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
from datasets import load_dataset | |
import numpy as np | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
import pandas as pd | |
import json | |
from datetime import datetime | |
import pyarrow.parquet as pq | |
import pypdf | |
import io | |
import platform | |
import subprocess | |
import pytesseract | |
from pdf2image import convert_from_path | |
import queue | |
import time | |
# -------------------- PDF to Markdown ๋ณํ ๊ด๋ จ import -------------------- | |
try: | |
import re | |
import requests | |
from bs4 import BeautifulSoup | |
import urllib.request | |
import ocrmypdf | |
import pytz | |
import urllib.parse | |
from pypdf import PdfReader | |
except ModuleNotFoundError as e: | |
raise ModuleNotFoundError( | |
"ํ์ ๋ชจ๋์ด ๋๋ฝ๋์์ต๋๋ค. 'beautifulsoup4' ํจํค์ง๋ฅผ ์ค์นํด์ฃผ์ธ์.\n" | |
"์: pip install beautifulsoup4" | |
) | |
# --------------------------------------------------------------------------- | |
# ์ ์ญ ๋ณ์ | |
current_file_context = None | |
# ํ๊ฒฝ ๋ณ์ ์ค์ | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
MODEL_ID = "CohereForAI/c4ai-command-r7b-12-2024" | |
MODEL_NAME = MODEL_ID.split("/")[-1] | |
model = None # ์ ์ญ์์ ๊ด๋ฆฌ | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
# (1) ์ํคํผ๋์ ๋ฐ์ดํฐ์ ๋ก๋ | |
wiki_dataset = load_dataset("lcw99/wikipedia-korean-20240501-1million-qna") | |
print("Wikipedia dataset loaded:", wiki_dataset) | |
# (2) TF-IDF ๋ฒกํฐ๋ผ์ด์ ์ด๊ธฐํ ๋ฐ ํ์ต (์ผ๋ถ๋ง ์ฌ์ฉ) | |
print("TF-IDF ๋ฒกํฐํ ์์...") | |
questions = wiki_dataset['train']['question'][:10000] | |
vectorizer = TfidfVectorizer(max_features=1000) | |
question_vectors = vectorizer.fit_transform(questions) | |
print("TF-IDF ๋ฒกํฐํ ์๋ฃ") | |
# ------------------------- ChatHistory ํด๋์ค ------------------------- | |
class ChatHistory: | |
def __init__(self): | |
self.history = [] | |
self.history_file = "/tmp/chat_history.json" | |
self.load_history() | |
def add_conversation(self, user_msg: str, assistant_msg: str): | |
conversation = { | |
"timestamp": datetime.now().isoformat(), | |
"messages": [ | |
{"role": "user", "content": user_msg}, | |
{"role": "assistant", "content": assistant_msg} | |
] | |
} | |
self.history.append(conversation) | |
self.save_history() | |
def format_for_display(self): | |
formatted = [] | |
for conv in self.history: | |
formatted.append([ | |
conv["messages"][0]["content"], | |
conv["messages"][1]["content"] | |
]) | |
return formatted | |
def get_messages_for_api(self): | |
messages = [] | |
for conv in self.history: | |
messages.extend([ | |
{"role": "user", "content": conv["messages"][0]["content"]}, | |
{"role": "assistant", "content": conv["messages"][1]["content"]} | |
]) | |
return messages | |
def clear_history(self): | |
self.history = [] | |
self.save_history() | |
def save_history(self): | |
try: | |
with open(self.history_file, 'w', encoding='utf-8') as f: | |
json.dump(self.history, f, ensure_ascii=False, indent=2) | |
except Exception as e: | |
print(f"ํ์คํ ๋ฆฌ ์ ์ฅ ์คํจ: {e}") | |
def load_history(self): | |
try: | |
if os.path.exists(self.history_file): | |
with open(self.history_file, 'r', encoding='utf-8') as f: | |
self.history = json.load(f) | |
except Exception as e: | |
print(f"ํ์คํ ๋ฆฌ ๋ก๋ ์คํจ: {e}") | |
self.history = [] | |
chat_history = ChatHistory() | |
# ------------------------- ์ํค ๋ฌธ์ ๊ฒ์ (TF-IDF) ------------------------- | |
def find_relevant_context(query, top_k=3): | |
query_vector = vectorizer.transform([query]) | |
similarities = (query_vector * question_vectors.T).toarray()[0] | |
top_indices = np.argsort(similarities)[-top_k:][::-1] | |
relevant_contexts = [] | |
for idx in top_indices: | |
if similarities[idx] > 0: | |
relevant_contexts.append({ | |
'question': questions[idx], | |
'answer': wiki_dataset['train']['answer'][idx], | |
'similarity': similarities[idx] | |
}) | |
return relevant_contexts | |
def init_msg(): | |
return "ํ์ผ์ ๋ถ์ํ๊ณ ์์ต๋๋ค..." | |
# -------------------- PDF ํ์ผ์ Markdown์ผ๋ก ๋ณํํ๋ ์ ํธ ํจ์๋ค -------------------- | |
def extract_text_from_pdf(reader: PdfReader) -> str: | |
full_text = "" | |
for idx, page in enumerate(reader.pages): | |
text = page.extract_text() or "" | |
if len(text) > 0: | |
full_text += f"---- Page {idx+1} ----\n" + text + "\n\n" | |
return full_text.strip() | |
def convert_pdf_to_markdown(pdf_file: str): | |
try: | |
reader = PdfReader(pdf_file) | |
except Exception as e: | |
return f"PDF ํ์ผ์ ์ฝ๋ ์ค ์ค๋ฅ ๋ฐ์: {e}", None, None | |
raw_meta = reader.metadata | |
metadata = { | |
"author": raw_meta.author if raw_meta else None, | |
"creator": raw_meta.creator if raw_meta else None, | |
"producer": raw_meta.producer if raw_meta else None, | |
"subject": raw_meta.subject if raw_meta else None, | |
"title": raw_meta.title if raw_meta else None, | |
} | |
full_text = extract_text_from_pdf(reader) | |
image_count = sum(len(page.images) for page in reader.pages) | |
if image_count > 0 and len(full_text) < 1000: | |
try: | |
out_pdf_file = pdf_file.replace(".pdf", "_ocr.pdf") | |
ocrmypdf.ocr(pdf_file, out_pdf_file, force_ocr=True) | |
reader_ocr = PdfReader(out_pdf_file) | |
full_text = extract_text_from_pdf(reader_ocr) | |
except Exception as e: | |
full_text = f"OCR ์ฒ๋ฆฌ ์ค ์ค๋ฅ ๋ฐ์: {e}\n\n์๋ณธ PDF ํ ์คํธ:\n\n" + full_text | |
return full_text, metadata, pdf_file | |
# ------------------------- ํ์ผ ๋ถ์ ํจ์ ------------------------- | |
def analyze_file_content(content, file_type): | |
if file_type in ['parquet', 'csv']: | |
try: | |
lines = content.split('\n') | |
header = lines[0] | |
columns = header.count('|') - 1 | |
rows = len(lines) - 3 | |
return f"๐ Dataset Structure: {columns} columns, {rows} rows" | |
except: | |
return "โ Failed to analyze dataset structure" | |
lines = content.split('\n') | |
total_lines = len(lines) | |
non_empty_lines = len([line for line in lines if line.strip()]) | |
if any(keyword in content.lower() for keyword in ['def ', 'class ', 'import ', 'function']): | |
functions = len([line for line in lines if 'def ' in line]) | |
classes = len([line for line in lines if 'class ' in line]) | |
imports = len([line for line in lines if 'import ' in line or 'from ' in line]) | |
return f"๐ป Code Structure: {total_lines} lines (Functions: {functions}, Classes: {classes}, Imports: {imports})" | |
paragraphs = content.count('\n\n') + 1 | |
words = len(content.split()) | |
return f"๐ Document Structure: {total_lines} lines, {paragraphs} paragraphs, approximately {words} words" | |
def read_uploaded_file(file): | |
if file is None: | |
return "", "" | |
import pyarrow.parquet as pq | |
import pandas as pd | |
from tabulate import tabulate | |
try: | |
file_ext = os.path.splitext(file.name)[1].lower() | |
if file_ext == '.parquet': | |
try: | |
table = pq.read_table(file.name) | |
df = table.to_pandas() | |
content = f"๐ Parquet File Analysis:\n\n" | |
content += f"1. Basic Information:\n" | |
content += f"- Total Rows: {len(df):,}\n" | |
content += f"- Total Columns: {len(df.columns)}\n" | |
mem_usage = df.memory_usage(deep=True).sum() / 1024 / 1024 | |
content += f"- Memory Usage: {mem_usage:.2f} MB\n\n" | |
content += f"2. Column Information:\n" | |
for col in df.columns: | |
content += f"- {col} ({df[col].dtype})\n" | |
content += f"\n3. Data Preview:\n" | |
content += tabulate(df.head(5), headers='keys', tablefmt='pipe', showindex=False) | |
content += f"\n\n4. Missing Values:\n" | |
null_counts = df.isnull().sum() | |
for col, count in null_counts[null_counts > 0].items(): | |
rate = count / len(df) * 100 | |
content += f"- {col}: {count:,} ({rate:.1f}%)\n" | |
numeric_cols = df.select_dtypes(include=['int64', 'float64']).columns | |
if len(numeric_cols) > 0: | |
content += f"\n5. Numeric Column Statistics:\n" | |
stats_df = df[numeric_cols].describe() | |
content += tabulate(stats_df, headers='keys', tablefmt='pipe') | |
return content, "parquet" | |
except Exception as e: | |
return f"Error reading Parquet file: {str(e)}", "error" | |
elif file_ext == '.pdf': | |
try: | |
markdown_text, metadata, processed_pdf_path = convert_pdf_to_markdown(file.name) | |
if metadata is None: | |
return f"PDF ํ์ผ ๋ณํ ์ค๋ฅ ๋๋ ์ฝ๊ธฐ ์คํจ.\n\n์๋ณธ ๋ฉ์์ง:\n{markdown_text}", "error" | |
content = "# PDF to Markdown Conversion\n\n" | |
content += "## Metadata\n" | |
for k, v in metadata.items(): | |
content += f"**{k.capitalize()}**: {v}\n\n" | |
content += "## Extracted Text\n\n" | |
content += markdown_text | |
return content, "pdf" | |
except Exception as e: | |
return f"Error reading PDF file: {str(e)}", "error" | |
elif file_ext == '.csv': | |
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1'] | |
for encoding in encodings: | |
try: | |
df = pd.read_csv(file.name, encoding=encoding) | |
content = f"๐ CSV File Analysis:\n\n" | |
content += f"1. Basic Information:\n" | |
content += f"- Total Rows: {len(df):,}\n" | |
content += f"- Total Columns: {len(df.columns)}\n" | |
mem_usage = df.memory_usage(deep=True).sum() / 1024 / 1024 | |
content += f"- Memory Usage: {mem_usage:.2f} MB\n\n" | |
content += f"2. Column Information:\n" | |
for col in df.columns: | |
content += f"- {col} ({df[col].dtype})\n" | |
content += f"\n3. Data Preview:\n" | |
content += df.head(5).to_markdown(index=False) | |
content += f"\n\n4. Missing Values:\n" | |
null_counts = df.isnull().sum() | |
for col, count in null_counts[null_counts > 0].items(): | |
rate = count / len(df) * 100 | |
content += f"- {col}: {count:,} ({rate:.1f}%)\n" | |
return content, "csv" | |
except UnicodeDecodeError: | |
continue | |
raise UnicodeDecodeError( | |
f"Unable to read file with supported encodings ({', '.join(encodings)})" | |
) | |
else: | |
encodings = ['utf-8', 'cp949', 'euc-kr', 'latin1'] | |
for encoding in encodings: | |
try: | |
with open(file.name, 'r', encoding=encoding) as f: | |
content = f.read() | |
lines = content.split('\n') | |
total_lines = len(lines) | |
non_empty_lines = len([line for line in lines if line.strip()]) | |
is_code = any( | |
keyword in content.lower() | |
for keyword in ['def ', 'class ', 'import ', 'function'] | |
) | |
analysis = "\n๐ File Analysis:\n" | |
if is_code: | |
functions = sum('def ' in line for line in lines) | |
classes = sum('class ' in line for line in lines) | |
imports = sum( | |
('import ' in line) or ('from ' in line) | |
for line in lines | |
) | |
analysis += f"- File Type: Code\n" | |
analysis += f"- Total Lines: {total_lines:,}\n" | |
analysis += f"- Functions: {functions}\n" | |
analysis += f"- Classes: {classes}\n" | |
analysis += f"- Import Statements: {imports}\n" | |
else: | |
words = len(content.split()) | |
chars = len(content) | |
analysis += f"- File Type: Text\n" | |
analysis += f"- Total Lines: {total_lines:,}\n" | |
analysis += f"- Non-empty Lines: {non_empty_lines:,}\n" | |
analysis += f"- Word Count: {words:,}\n" | |
analysis += f"- Character Count: {chars:,}\n" | |
return content + analysis, "text" | |
except UnicodeDecodeError: | |
continue | |
raise UnicodeDecodeError( | |
f"Unable to read file with supported encodings ({', '.join(encodings)})" | |
) | |
except Exception as e: | |
return f"Error reading file: {str(e)}", "error" | |
# ------------------------- CSS ------------------------- | |
CSS = """ | |
/* (์๋ต: ๋์ผ) */ | |
""" | |
def clear_cuda_memory(): | |
if hasattr(torch.cuda, 'empty_cache'): | |
with torch.cuda.device('cuda'): | |
torch.cuda.empty_cache() | |
# ------------------------- ๋ชจ๋ธ ๋ก๋ฉ ํจ์ ------------------------- | |
def load_model(): | |
try: | |
clear_cuda_memory() | |
loaded_model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
low_cpu_mem_usage=True, | |
) | |
# (์ค์) ๋ชจ๋ธ ๊ธฐ๋ณธ config์์๋ ์บ์ ์ฌ์ฉ ๊บผ๋ ์ ์์ | |
loaded_model.config.use_cache = False | |
return loaded_model | |
except Exception as e: | |
print(f"๋ชจ๋ธ ๋ก๋ ์ค๋ฅ: {str(e)}") | |
raise | |
def build_prompt(conversation: list) -> str: | |
prompt = "" | |
for msg in conversation: | |
if msg["role"] == "user": | |
prompt += "User: " + msg["content"] + "\n" | |
elif msg["role"] == "assistant": | |
prompt += "Assistant: " + msg["content"] + "\n" | |
prompt += "Assistant: " | |
return prompt | |
# ------------------------- ๋ฉ์์ง ์คํธ๋ฆฌ๋ฐ ํจ์ ------------------------- | |
def stream_chat( | |
message: str, | |
history: list, | |
uploaded_file, | |
temperature: float, | |
max_new_tokens: int, | |
top_p: float, | |
top_k: int, | |
penalty: float | |
): | |
global model, current_file_context | |
try: | |
if model is None: | |
model = load_model() | |
print(f'[User input] message: {message}') | |
print(f'[History] {history}') | |
# 1) ํ์ผ ์ ๋ก๋ ์ฒ๋ฆฌ | |
file_context = "" | |
if uploaded_file and message == "ํ์ผ์ ๋ถ์ํ๊ณ ์์ต๋๋ค...": | |
current_file_context = None | |
try: | |
content, file_type = read_uploaded_file(uploaded_file) | |
if content: | |
file_analysis = analyze_file_content(content, file_type) | |
file_context = ( | |
f"\n\n๐ ํ์ผ ๋ถ์ ๊ฒฐ๊ณผ:\n{file_analysis}" | |
f"\n\nํ์ผ ๋ด์ฉ:\n```\n{content}\n```" | |
) | |
current_file_context = file_context | |
message = "์ ๋ก๋๋ ํ์ผ์ ๋ถ์ํด์ฃผ์ธ์." | |
except Exception as e: | |
print(f"[ํ์ผ ๋ถ์ ์ค๋ฅ] {str(e)}") | |
file_context = f"\n\nโ ํ์ผ ๋ถ์ ์ค ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}" | |
elif current_file_context: | |
file_context = current_file_context | |
# 2) ์ํค ์ปจํ ์คํธ | |
wiki_context = "" | |
try: | |
relevant_contexts = find_relevant_context(message) | |
if relevant_contexts: | |
wiki_context = "\n\n๊ด๋ จ ์ํคํผ๋์ ์ ๋ณด:\n" | |
for ctx in relevant_contexts: | |
wiki_context += ( | |
f"Q: {ctx['question']}\n" | |
f"A: {ctx['answer']}\n" | |
f"์ ์ฌ๋: {ctx['similarity']:.3f}\n\n" | |
) | |
except Exception as e: | |
print(f"[์ปจํ ์คํธ ๊ฒ์ ์ค๋ฅ] {str(e)}") | |
# 3) ๋ํ ์ด๋ ฅ ์ถ์ | |
max_history_length = 10 | |
if len(history) > max_history_length: | |
history = history[-max_history_length:] | |
conversation = [] | |
for prompt, answer in history: | |
conversation.extend([ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer} | |
]) | |
# 4) ์ต์ข ๋ฉ์์ง | |
final_message = message | |
if file_context: | |
final_message = file_context + "\nํ์ฌ ์ง๋ฌธ: " + message | |
if wiki_context: | |
final_message = wiki_context + "\nํ์ฌ ์ง๋ฌธ: " + message | |
if file_context and wiki_context: | |
final_message = file_context + wiki_context + "\nํ์ฌ ์ง๋ฌธ: " + message | |
conversation.append({"role": "user", "content": final_message}) | |
# 5) ํ ํฐํ | |
input_ids_str = build_prompt(conversation) | |
max_context = 8192 | |
tokenized_input = tokenizer(input_ids_str, return_tensors="pt") | |
input_length = tokenized_input["input_ids"].shape[1] | |
# 6) ์ปจํ ์คํธ ์ด๊ณผ ์ ์๋ฅด๊ธฐ | |
if input_length > max_context - max_new_tokens: | |
print(f"[๊ฒฝ๊ณ ] ์ ๋ ฅ์ด ๋๋ฌด ๊น๋๋ค: {input_length} ํ ํฐ -> ์๋ผ๋.") | |
min_generation = min(256, max_new_tokens) | |
new_desired_input_length = max_context - min_generation | |
tokens = tokenizer.encode(input_ids_str) | |
if len(tokens) > new_desired_input_length: | |
tokens = tokens[-new_desired_input_length:] | |
input_ids_str = tokenizer.decode(tokens) | |
tokenized_input = tokenizer(input_ids_str, return_tensors="pt") | |
input_length = tokenized_input["input_ids"].shape[1] | |
print(f"[ํ ํฐ ๊ธธ์ด] {input_length}") | |
inputs = tokenized_input.to("cuda") | |
# 7) ๋จ์ ํ ํฐ ์๋ก max_new_tokens ๋ณด์ | |
remaining = max_context - input_length | |
if remaining < max_new_tokens: | |
print(f"[max_new_tokens ์กฐ์ ] {max_new_tokens} -> {remaining}") | |
max_new_tokens = remaining | |
# 8) TextIteratorStreamer ์ค์ | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True | |
) | |
# โ use_cache=False ์ค์ (์ค์) โ | |
generate_kwargs = dict( | |
**inputs, | |
streamer=streamer, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=penalty, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
pad_token_id=tokenizer.pad_token_id or tokenizer.eos_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
use_cache=False, # โ ์ฌ๊ธฐ๊ฐ ํต์ฌ! | |
) | |
clear_cuda_memory() | |
# 9) ๋ณ๋ ์ค๋ ๋๋ก ๋ชจ๋ธ ํธ์ถ | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
# 10) ์คํธ๋ฆฌ๋ฐ | |
buffer = "" | |
partial_message = "" | |
last_yield_time = time.time() | |
try: | |
for new_text in streamer: | |
buffer += new_text | |
partial_message += new_text | |
# ํ์ด๋ฐ or ์ผ์ ๊ธธ์ด๋ง๋ค UI ์ ๋ฐ์ดํธ | |
current_time = time.time() | |
if (current_time - last_yield_time > 0.1) or (len(partial_message) > 20): | |
yield "", history + [[message, buffer]] | |
partial_message = "" | |
last_yield_time = current_time | |
# ๋ง์ง๋ง ์ถ๋ ฅ | |
if buffer: | |
yield "", history + [[message, buffer]] | |
# ๋ํ ํ์คํ ๋ฆฌ ์ ์ฅ | |
chat_history.add_conversation(message, buffer) | |
except Exception as e: | |
print(f"[์คํธ๋ฆฌ๋ฐ ์ค ์ค๋ฅ] {str(e)}") | |
if not buffer: | |
buffer = f"์๋ต ์์ฑ ์ค ์ค๋ฅ ๋ฐ์: {str(e)}" | |
yield "", history + [[message, buffer]] | |
if thread.is_alive(): | |
thread.join(timeout=5.0) | |
clear_cuda_memory() | |
except Exception as e: | |
import traceback | |
error_details = traceback.format_exc() | |
error_message = f"์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}\n{error_details}" | |
print(f"[Stream chat ์ค๋ฅ] {error_message}") | |
clear_cuda_memory() | |
yield "", history + [[message, error_message]] | |
# ------------------------- Gradio UI ๊ตฌ์ฑ ------------------------- | |
def create_demo(): | |
with gr.Blocks(css=CSS) as demo: | |
with gr.Column(elem_classes="markdown-style"): | |
gr.Markdown(""" | |
# ๐ค RAGOndevice | |
#### ๐ RAG: Upload and Analyze Files (TXT, CSV, PDF, Parquet files) | |
Upload your files for data analysis and learning | |
""") | |
chatbot = gr.Chatbot( | |
value=[], | |
height=600, | |
label="GiniGEN AI Assistant", | |
elem_classes="chat-container" | |
) | |
with gr.Row(elem_classes="input-container"): | |
with gr.Column(scale=1, min_width=70): | |
file_upload = gr.File( | |
type="filepath", | |
elem_classes="file-upload-icon", | |
scale=1, | |
container=True, | |
interactive=True, | |
show_label=False | |
) | |
with gr.Column(scale=3): | |
msg = gr.Textbox( | |
show_label=False, | |
placeholder="Type your message here... ๐ญ", | |
container=False, | |
elem_classes="input-textbox", | |
scale=1 | |
) | |
with gr.Column(scale=1, min_width=70): | |
send = gr.Button( | |
"Send", | |
elem_classes="send-button custom-button", | |
scale=1 | |
) | |
with gr.Column(scale=1, min_width=70): | |
clear = gr.Button( | |
"Clear", | |
elem_classes="clear-button custom-button", | |
scale=1 | |
) | |
# ๊ณ ๊ธ ์ค์ | |
with gr.Accordion("๐ฎ Advanced Settings", open=False): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
temperature = gr.Slider( | |
minimum=0, maximum=1, step=0.1, value=0.8, | |
label="Creativity Level ๐จ" | |
) | |
max_new_tokens = gr.Slider( | |
minimum=128, maximum=8000, step=1, value=4000, | |
label="Maximum Token Count ๐" | |
) | |
with gr.Column(scale=1): | |
top_p = gr.Slider( | |
minimum=0.0, maximum=1.0, step=0.1, value=0.8, | |
label="Diversity Control ๐ฏ" | |
) | |
top_k = gr.Slider( | |
minimum=1, maximum=20, step=1, value=20, | |
label="Selection Range ๐" | |
) | |
penalty = gr.Slider( | |
minimum=0.0, maximum=2.0, step=0.1, value=1.0, | |
label="Repetition Penalty ๐" | |
) | |
# ์์ ์ ๋ ฅ | |
gr.Examples( | |
examples=[ | |
["Please analyze this code and suggest improvements:\ndef fibonacci(n):\n if n <= 1: return n\n return fibonacci(n-1) + fibonacci(n-2)"], | |
["Please analyze this data and provide insights:\nAnnual Revenue (Million)\n2019: 1200\n2020: 980\n2021: 1450\n2022: 2100\n2023: 1890"], | |
["Please solve this math problem step by step: 'When a circle's area is twice that of its inscribed square, find the relationship between the circle's radius and the square's side length.'"], | |
["Please analyze this marketing campaign's ROI and suggest improvements:\nTotal Cost: $50,000\nReach: 1M users\nClick Rate: 2.3%\nConversion Rate: 0.8%\nAverage Purchase: $35"], | |
], | |
inputs=msg | |
) | |
# ๋ํ ๋ด์ฉ ์ด๊ธฐํ | |
def clear_conversation(): | |
global current_file_context | |
current_file_context = None | |
return [], None, "Start a new conversation..." | |
# ๋ฉ์์ง ์ ์ก(Submit) | |
msg.submit( | |
stream_chat, | |
inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty], | |
outputs=[msg, chatbot] | |
) | |
send.click( | |
stream_chat, | |
inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty], | |
outputs=[msg, chatbot] | |
) | |
# ํ์ผ ์ ๋ก๋ ์ด๋ฒคํธ | |
file_upload.change( | |
fn=lambda: ("์ฒ๋ฆฌ ์ค...", [["์์คํ ", "ํ์ผ์ ๋ถ์ ์ค์ ๋๋ค. ์ ์๋ง ๊ธฐ๋ค๋ ค์ฃผ์ธ์..."]]), | |
outputs=[msg, chatbot], | |
queue=False | |
).then( | |
fn=init_msg, | |
outputs=msg, | |
queue=False | |
).then( | |
fn=stream_chat, | |
inputs=[msg, chatbot, file_upload, temperature, max_new_tokens, top_p, top_k, penalty], | |
outputs=[msg, chatbot], | |
queue=True | |
) | |
# Clear ๋ฒํผ | |
clear.click( | |
fn=clear_conversation, | |
outputs=[chatbot, file_upload, msg], | |
queue=False | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = create_demo() | |
demo.launch() | |